
MAT 2010 - Fall 2021 Exam Solutions

Problem 1

Set up the difference qoutient:
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So, by definition of the derivative:

f ′(x) = lim
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As h → 0 then,
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Problem 2

Part(a):
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lim
x→∞

√
2x2 + 3

x+ 7
= lim

x→∞

√
x2(2 + 3

x2 )

x(1 + 7
x )

= lim
x→∞

√
x2

√
2 + 3

x2

x(1 + 7
x )

= lim
x→∞

|x|
√

2 + 3
x2

x(1 + 7
x )

Since x is positive as x → ∞, we replace |x| with x.
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Part(c):
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This form let’s us use L’Hôpital’s rule:
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Problem 3

Part(a):
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Part(b):

g′(x) = (cos(2x) ln(x− 1))
′
= cos(2x)′ ln(x−1)+cos(2x) ln(x−1)′ = −2 sin(2x) ln(x−1)+cos(2x)
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Problem 4
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Problem 5
d
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Problem 6

Critical numbers are x-values where f ′(x) = 0 or where f ′(x) is undefined. So,

f ′(x) =

(
x2

x− 1

)′

=
(x2)′(x− 1)− x2(x− 1)′

(x− 1)2
=

2x(x− 1)− x2

(x− 1)2
=

x2 − 2x

(x− 1)2
=

x(x− 2)

(x− 1)2

Then f ′(x) is undefined at x = 1 and f ′(x) = 0 when x(x − 2) = 0 which occurs at x = 0, 2. The
critical numbers of f(x) are x = 0, 1, 2.
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Problem 7

Plug in the known volume and rewrite the volume equation in terms of a single variable h:

V = 16π = πr2h =⇒ 16 = r2h =⇒ 16

r2
= h

Now we can substitute this in for h in the surface area equation and minimize it by taking the
derivative and finding where it’s equal to 0:

S = 2πr2 + 2πrh = 2πr2 + 2πr
16

r2
= 2πr2 +

32π

r

S′ = 4πr − 32π

r2
= 0 =⇒ 4πr3 − 32π = 0 =⇒ r3 =

32π

4π
=⇒ r3 = 8 =⇒ r = 2

To verify that this occurs at a minimum, make a sign chart or use the second derivative test:

S′′ = 4π +
64π

r3
=⇒ S′′(2) = 4π +

64π

8
> 0

The function S is concave up at r = 2 so the critical value at r = 2 must be a minimum. Therefore,
the final dimensions are r = 2m, h = 16

22 = 4m, and the minimum amount of material is S =
2π(22) + 32π

2 = 24πm2.

Problem 8

Let T be the total amount of water released between 7a.m. (t = 0) and 9:24a.m. (t = 144). Then,

T =

∫ 144

0

r(t)dt =

∫ 144

0

(
100 +

√
t
)
dt =

(
100t+

2t3/2

3

) ∣∣∣∣144
0

= 100(144)+
2 · (144)3/2

3
−
(
100 · 0 + 2 · 03/2

3

)

= 14400 +
2 · 123

3
− (0) = 15552 gallons
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Problem 9

The function f(x) has constant slope on (−∞, 0). Find the slope by using the slope formula
m = y2−y1

x2−x1
= 6−4

−2−(−1) = −2. So, on the graph of f ′(x), the function is -2 on the interval (−∞, 0).

Also, the slope of f(x) is zero on the interval (0,∞). So, the graph of f ′(x) will be 0 on the interval
(0,∞). The slope of the graph of f(x) is also zero at x = 2 and x = 4. So, the graph of f ′(x)
has points (2, 0) and (4, 0). It is also important to note that f ′(x) is not defined at x = 0 (because
there is a jump) and at x = 6 (because it is not smooth).

The graph of f ′(x) between the values of x = 0 and x = 6 are roughly sketched based on
the slopes of the original function and do not need to be perfect. Since f(x) looks like a cubic
polynomial on the interval (0, 6), a good guess for f ′(x) is to draw something that looks quadratic
(like a parabola) on (0, 6).

Problem 10

For this problem it is important to recognize the integral of f(t) from −5 to x conceptually is the
area under the curve of f(t) between −5 and x. Area above the x-axis is positive and area below
the x-axis is negative.

Part(a): g(5) is the are under the curve f(t) from −5 to 5. Break the picture up into triangles
and calculate the are of each triangle using A△ = 1

2 · base ·height and giving the areas a positive or
negative sign depending on if they’re above or below the x-axis. So if △1,△2,△3 are the triangles
from left to right:

g(5) = −A△1 +A△2 −A△3 = −1

2
· 2 · 4 + 1

2
· 4 · 3− 1

2
· 4 · 2 = −4 + 6− 4 = −2
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Problem 10 (continued)

Part(b): Using the fundemental theorem of calculus:

g′(x) =
d

dx

(∫ x

−5

f(t)dt

)
= f(x)

So, g′(2) = f(2) = −1 from the graph, and g′′(2) = f ′(2) = the slope of f(x) at x = 2 which is −1.

Part(c): Similar to above, g′(1) = f(1) = 0 from the graph, and g′′(1) = f ′(1) does not exist
(DNE) since the derivative is not defined at corners.

Problem 11

Let f(x) = x5/3 and a = 1. Then f ′(x) = 5
3x

2/3 and f(a) = f(1) = 1 and f ′(a) = f ′(1) = 5
3 .

By Linear Approximation:

f(x) ≈ L(x) = f(a) + f ′(a)(x− a) = 1 +
5

3
(x− 1) =⇒ f(1.2) ≈ L(1.2) = 1 +

5

3
(1.2− 1) =

4

3

By Differentials:

x = 1.2 =⇒ dx = x− a = 1.2− 1 = 0.2 =⇒ dy = f ′(a)dx =
5

3
(0.2) = 1/3

Therefore, (1.2)3/5 ≈ f(a) + dy = 1 +
1

3
=

4

3

Problem 12

Sign chart for f ′(x):

f ′(x) = − 3(x
2−3)

2(x2+1) = 0 =⇒ −3(x2 − 3) = 0 =⇒ x2 = 3 =⇒ x = ±
√
3 (critical numbers)

f ′(x) has no ”bad” numbers where it is undefined.

−
√
3

√
3

f ′(x)

So, f(x) is decreasing on the intervals (−∞,−
√
3) ∪ (

√
3,∞).

f(x) is increasing on the interval (−
√
3,
√
3).

f(x) has a local minimum at x = −
√
3 and a local maximum at x =

√
3.
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Problem 12 (continued)

Sign chart for f ′′(x):
f ′′(x) = − 12x

(x2+1)2 = 0 =⇒ 12x = 0 =⇒ x = 0 (critical number)

f ′′(x) has no ”bad” numbers where it is undefined.

0

f ′′(x)

So, f(x) is concave down on the interval (0,∞).
f(x) is concave up on the interval (−∞, 0).
f(x) has an inflection point at x = 0.

Asymptotes: There are no vertical asymptotes. Also, lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = ∞, so

there are no horizontal asymptotes.

Graph: Putting together all of the information solved above and given in the problem:

local min.

local max.

√
3−

√
3

point of inflection
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