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Problem I.1. A cube of mass M slides without friction down an inclined plane with
elevation angle θ. The cube starts its motion from rest and travels a distance s after a
time t. A table of integrals follows for use in this problem.

a) (2 pts.) Using conservation of energy, find kinetic energy K(s) and velocity v(s).

b) (2 pts.) Find s(t) by integration, using the result in a) for v(s).

Now consider a solid cylinder of mass m, radius R, and moment of inertia I, rolling without
slipping down the same inclined plane. The cylinder also starts from rest and travels a
distance s after a time t.

c) (3 pts.) Find v(s) using conservation of energy.

d) (3 pts.) Find s(t) by integration. Show that for I = 0 the formula for s(t) reduces to
that found in b).
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Problem I.2. A thin rectangular plate of mass m and dimensions a, b (a > b) rotates
around an axis ~ω along one of its diagonals (see figure). In the plate’s reference frame, side
a is along the x−axis, side b is along the y−axis, and the origin of the coordinate system
is at the center of gravity of the plate.

a) (3 pts.) Compute the inertia tensor.

b) (2 pts.) Find the eigenvectors and the eigenvalues of the inertia tensor.

c) (2 pts.) Evaluate the angular momentum in the plate’s system.

d) (3 pts.) Evaluate the torque acting on the plate.

Figure 1: A thin rectangular plate with dimensions a, b (a > b) rotates around an axis ~ω
along one of its diagonals.



Problem I.3. A bead of mass m is constrained to slide on a stiff wire rotating in the x−y
plane with angular velocity ω0. The bead is attached to the pivot point of the wire via a
spring of strength k and natural length d.

a) (3 pts.) Find the Lagrangian of the bead and the equations of motion.

b) (3 pts.) Solve the equations of motion and find the positions and velocities as a function
of time. Assume that the particle is initially at rest at a distance d from the pivot point
(the spring is not stretched).

c) (2 pts.) Evaluate the torque on the particle as a function of position and velocity.

d) (2 pts.) Evaluate the reaction force of the wire on the bead, and the maximum reaction
force.

ω0

d

Figure 2: A bead is constrained to slide on a stiff wire rotating with angular velocity ω0.
The bead is attached to the pivot point of the wire via a spring of natural length d.
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Problem II.1. A solid insulating charged sphere of radius R has a spherical cavity of
radius a cut inside at location ~b relative to the center of the sphere. The remaining sphere
has a fixed uniform positive charge density ρ (charges do not move within the sphere). The
sphere is located near an infinite conducting grounded plate, with its center a distance d
from the plate.

a) (1 pt.) What is the total charge on the sphere?

b) (2 pts.) What is the electric field in the vicinity of the sphere (both inside and outside
the sphere) if the conducting plate is not present?

c) (3 pts.) What is the electric field in the entire hemisphere containing the sphere, above
the grounded plane?

d) (3 pts.) What is the induced charge density on the conducting plate?

e) (1 pt.) What is the total induced charge on the conducting plate?

R	  

d	  

b	   a	  

Figure 1: A solid insulating charged sphere of radius R has a spherical cavity of radius a
cut inside at location ~b relative to the center of the sphere. The sphere is located near an
infinite conducting grounded plate, with its center a distance d from the plate.



Problem II.2. An air core (cylindrical) solenoid has diameter D and is wound with a wire
of length l, diameter d, and resistivity ρ. The solenoid is wound with no space between
turns, as shown in the figure. Find the following quantities in terms of the given variables
and fundamental constants:

a) (2 pts.) the length L of the solenoid,

b) (1 pt.) the resistance of the wire,

c) (2 pts.) the inductance.

d) (3 pts.) The solenoid is connected to an AC source of frequency f and amplitude V0.
The phase of the voltage is such that V (t = 0) = 0 . Compute the time dependence of the
voltage across the solenoid.

e) (2 pts.) Evaluate Irms.

Figure 2: An air core (cylindrical) solenoid is wound with a wire such that there is no space
between turns.



Problem II.3. A sphere of radius a is conducting and held at voltage V0. A second larger
spherical thin shell, of radius b, is concentric to the first sphere and insulating. A static
charge is present on the insulating shell with density

σ(θ) = σ0 cos θ = σ0P1(cos θ),

where P1 is the Legendre polynomial of first order. Recall that the general solution to
spherical problems is

V (r) = Σl(Alr
l +

Bl

rl+1
)Pl(cos θ).

a) (2 pts.) Find the potential inside the conducting sphere.

b) (3 pts.) State all boundary conditions.

c) (2 pts.) Write the general solution for the potential outside the sphere (r > a) using
separation of variables.

d) (3 pts.) Calculate explicitly the potential for r > a.

Figure 3: A sphere of radius a is conducting and held at voltage V0. A second larger
spherical thin shell of radius b is concentric to the first sphere and insulating. A static
charge is present on the insulating shell with density σ(θ) = σ0P1(cos θ).
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Problem III.1. A beam of particles can be described by a quantum-mechanical wave.
Consider the 1-dimensional motion of a beam of particles of mass m and energy E > 0
traveling (non-relativistically) in the −x direction and incident on a step potential at x = 0.
(The particles have x > 0 before they reach the step.) The potential energy is described
by

U(x) =

{
−U0 x < 0

0 x ≥ 0

where U0 is a positive real number.

a) (2 pts.) State the time-independent Schroedinger equation for each region of x.

b) (2 pts.) State the form of the solutions for each region of x.

c) (2 pts.) State the boundary conditions.

d) (3 pts.) Find the probability that a particle is back-scattered (reflected).

e) (1 pt.) Using the result in d) find the probability for back scattering in the classical
limit.



Problem III.2. A one-dimensional quantum harmonic oscillator of mass m has ground
state time-independent wavefunction ψ0(x) for potential energy V (x) = 1

2kx
2 (k > 0).

a) (6 pts.) Find ψ0(x) with the correct normalization factor using the lowering operator â
for which âψn(x) =

√
nψn−1(x), where â = ip̂+mωx, ω =

√
k/m, and p̂ is the momentum

operator. A mathematical table follows.

b) (4 pts.) At a certain point in time, k is instantly doubled so that the potential enmergy
becomes V ′0 = kx2 for which the ground state is ψ′0(x). For the instant when V0 is changed
into V ′0 , find the numerical value of the probability of finding the particle in state ψ′0.



Problem III.3. A spin 1/2 particle interacts with a magnetic field ~B = B0ẑ through the
Pauli interaction H = µ~σ · ~B where µ is the magnetic moment.

The Pauli spin matrices are ~σ = (σx, σy, σz) where the σi are

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
.

The eigenstates for σz are the spinors

α =

[
1
0

]
β =

[
0
1

]
.

(a) (3 pts.) Suppose that at time t = 0 the particle is in an eigenstate χx corresponding to
spin pointing along the positive x-axis. Find the eigenstate χx in terms of α and β.

(b) (7 pts.) For a later time t, find the probability that the particle is in an eigenstate
corresponding to the spin pointing along the negative y-axis.
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Problem IV.1. One mole of a van-der-Waals gas (at pressure Pi and temperature Ti) is
held within a container with a movable piston. The walls of the container are adiabatic
(cannot absorb any heat). A piston can be used to change the volume V of the gas in
the container. There is a valve on the piston that when opened allows gas to freely flow
through it. Initially the gas is only in the bottom portion of the container with a volume
V0/2.

a) (5 pts.) The valve is opened and the gas is allowed to expand into the remainder of the
container (the full volume V0). Assuming that the specific heat at constant volume cV is
independent of temperature, what is the new temperature of the gas?

b) (5 pts.) Then the piston is drawn completely to the top. The valve is now shut and the
piston is pushed down until the entire gas is in the bottom of the container within volume
V0/2. What is the new temperature of the gas ?

The van-der-Waals gas has an equation of state(
P +

a

V 2

)
(V − b) = RT (1)

where a, b are small constants.

Maxwell’s relation is (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

. (2)

Figure 1: A gas is contained in a volume with a movable piston and a valve.



Problem IV.2. A box contains 4 distinguishable (classical) particles and 4 energy levels
0, a, 2a and 3a (where a is a positive constant). Ignore zero point energy in all calculations
below.

a) (3 pts.) Initially the box is completely thermally insulated, with total energy 4a inside.
What is the degeneracy of this state ?

b) (3 pts.) In the next scenario, the box is held in thermal contact with a heat reservoir
at a temperature T = 1/β (Canonical Ensemble). What is the partition function for the
box? What is the mean energy at a temperature T of the reservoir? Find the temperature
T4a at which the mean energy of the box is equal to 4a. Just set up the equation for this
temperature, but do not solve it.

c) (4 pts.) Now, consider the case where the box in part a) is brought in contact with
a reservoir at a temperature of T4a. What is the mean energy transferred between the
reservoir and the box? What is the variance (fluctuation) of this energy transfer?



Problem IV.3. A photon of energy E collides with a stationary electron whose rest mass
energy is 511 keV. After the collsion the photon scatters at an angle θ (with respect to its
original direction) with energy E′. The motion of the electron can be described classically
(non-relativistically).

Answer the following questions in terms of the given variables and fundamental con-
stants.

a) (1 pt.) What is the initial wavelength of the photon?

b) (2 pts.) What is the final-state (DeBroglie) wavelength of the electron?

c) (2 pts.) Suppose that the photon loses 100 eV of energy in the collision. Find the factor
β = v/c of the final state electron.

d) (5 pts.) Denote the ratio of E to electron rest mass energy by r and the ratio of E′ to E
by f . Find the scattering angle of the electron relative to the initial photon direction.
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