LABORATORIES AND FACILITIES

The seven-story Biological Sciences Building is located at the south end of Wayne State University’s main campus and contains 31 research laboratories, totaling 30,648 square feet. Seminar rooms, conference rooms and classrooms are located within the building, and informal meeting areas are found on each floor. Common facilities include darkrooms, cold rooms, rooftop greenhouses, glassware washing and autoclave facilities. The biological imaging facility houses a Leica TCS SP2 spectral photometer laser-scanning confocal microscope for digital, high-resolution imaging of fluorescently labeled cells and tissues. Additional shared equipment includes refrigerated, high-speed and ultracentrifuges; scintillation counters; UV-Vis spectrophotometers; real-time, quantitative PCR cycling machines; a Typhoon imaging system; UV and white light image processor and documenter; and an X-ray film developer. The basement houses mouse, rat and Drosophila breeding and maintenance facilities.

These departmental facilities are complemented by newly renovated space in the Wayne State University School of Medicine, which offers core facilities that support molecular and genomic research. This includes services such as study design, nucleic acid isolation, genotyping, expression analysis and sequencing with major equipment like the Affymetrix microarray systems and the Illumina HiSeq 2500 platforms.

The College of Liberal Arts and Sciences maintains several facilities that support our research programs. The science storeroom stocks an extensive inventory of chemicals, laboratory consumables, small equipment items, biochemical and molecular biological reagents, and related supplies for rapid on-site purchase. The electronics and computer shop provides services for the design and repair of electronic equipment as well as diagnosis and repair of malfunctioning computers. The college also supports a central instrumentation facility, which houses mass spectrometers, rapid-scanning and CD/ORD spectrophotometers, X-ray crystallography and electron paramagnetic resonance instrumentation. In addition, biological nuclear magnetic resonance experiments can be carried out using 300, 400 and 500 MHz spectrometers.