We are proud to present three distinguished talks on Parking:

Parking is available on campus. Cost - $3 (Dollar bills preferred).

Registration and Fees:
No registration is required and there is no cost for participation.

Inquiry and information:
Telephone: (313) 577-2500

Can We Starve Ourselves to Better Health and a Longer Life?
A Zoologist’s Perspective on Calorie Restriction

Reducing food intake has been shown to improve health and lengthen life in numerous animal species. These widely publicized findings have convinced many researchers, as well as hopeful members of the lay public, that food restriction, or its pharmaceutical equivalent, represents our best hope for a future quantum leap in human health and longevity. I will discuss this notion from the perspective of a zoologist considering the impact of food restriction and its effects across a broad sweep of animal species. I will also point to some of the known side-effects of life-extending food restriction that could make its human implementation less than completely attractive, even if the health benefits turn out to be real for humans.

Steven Austad, Ph.D., Professor of Cellular and Structural Biology at the Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio.

Parking: Parking is available on campus. Cost - $3 (Dollar bills preferred).
Registration and Fees: No registration is required and there is no cost for participation.
Inquiry and information: Telephone: (313) 577-2500
Using Genetics to Probe the Anti-Aging Actions of Dietary Restriction in Mice.

Chronic restriction of food intake has long been known to extend life span and delay physiological decline and age-related disease. Many factors have been hypothesized to account for these effects of dietary restriction, including reduced adiposity, increased insulin sensitivity and resistance to oxidative and other stressors. However, obtaining definitive evidence for causality has been elusive. Here, we exploit the genetic variation intrinsic to a large set of recombinant inbred (RI) strains of mice to gain insight into this question. We find dramatic genetic differences among RI strains in the response of life span, as well as body composition, insulin sensitivity, and stress resistance, to diet restriction. In addition, we are finding genetic loci (QTLs) that specify these responses. Data are still being collected and analyzed, but we already find that one factor, fat reduction, is strongly and inversely correlated with life span in DR mice, suggesting that the two processes are genetically co-specified and under common regulation. These results, and others that will be presented, indicate the promise of this approach for advancing our understanding of the biological mechanisms underlying the anti-aging actions of diet restriction.

Late life depression, Executive functioning and nutritional risk in African American Urban Elders

This talk will examine the relationship of vascular risk factors, depression and nutritional habits among African American urban elders. Specific research on the relationships between vascular risk and depression as well as executive functioning will be presented. Implications for treatment, including stress management and chronic disease treatment adherence will be presented.