Effects of biotic disturbances on forest carbon cycling in the United States and Canada

JEFFREY A. HICKE*, CRAIG D. ALLEN†, ANKUR R. DESAI‡, MICHAEL C. DIETZE§, RONALD J. HALL¶, EDWARD H. (TED) HOGG‡, DANIEL M. KASHIAN**, DAVID MOORE††, KENNETH F. RAFFA‡, RONA N. STURROCK‡‡ and JAMES VOGELMANN§§

*University of Idaho, Moscow, ID 83844, USA, †U.S. Geological Survey, Los Alamos, NM 87544, USA, ‡University of Wisconsin, Madison, 53706, WI 53706, USA, §University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, ¶Natural Resources Canada, Canadian Forest Service, Edmonton, T6H 3S5, AB T6H 3S5, Canada, **Wayne State University, Detroit, MI 48202, USA, ††University of Arizona, Tucson, AZ 85721, USA, ‡‡Natural Resources Canada, Canadian Forest Service, Victoria, BC V8Z 1M5, Canada, §§U.S. Geological Survey, Sioux Falls, SD 57198, USA

Abstract

Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.

Keywords: carbon cycling, disturbances, insects, pathogens

Received 24 May 2011; revised version received 22 August 2011 and accepted 29 August 2011

Introduction

Atmospheric CO$_2$ is a key driver of past and predicted future climate change (IPCC, 2007). In addition to anthropogenic emissions of carbon (C) from fossil fuel burning and other activities, exchange of C with the biosphere is crucial for governing the amount of CO$_2$ in the atmosphere (CCSP, 2007; Le Quere et al., 2009). Biogenic fluxes of C occur mainly through the interplay of CO$_2$ uptake by plants (photosynthesis) and release of C back into the atmosphere via autotrophic and heterotrophic respiration (decomposition). Both of these processes are strongly mediated by abiotic and biotic disturbance processes (Kurz & Apps, 1999; Ciais et al., 2005; Amiro et al., 2010).

There is considerable interest in quantifying the North American C budget that has, in part, been driven by national and international reporting obligations (Chapin et al., 2008; Kurz et al., 2008b). North American terrestrial ecosystems are thought to have been functioning as a carbon sink during the past few decades as a result of forest regrowth following harvest in past centuries, woody encroachment, and sequestration by wetlands and agricultural soils (CCSP, 2007). The First State of the Carbon Cycle Report estimated a North American sink of 0.5 Pg C yr$^{-1}$ (1 Pg C = 1015 g C) in 2003, though with large uncertainty (CCSP, 2007).
Reducing this uncertainty to increase confidence in future predictions of C dynamics and to support climate change adaptation and mitigation activities will require research to quantify the magnitude of C sources and sinks and their spatial patterns and controls (Dennig, 2005).

Forests play major roles in the global carbon cycle through their influence on the dynamics of the terrestrial carbon cycle (Bonan, 2008; Canadell & Raupach, 2008). Forests contain 422 Pg C, 76% of the C in terrestrial vegetation and about the same amount as in the atmosphere (Houghton & Skole, 1990). In the Northern Hemisphere, forests are major carbon sinks, taking up 0.6–0.7 Pg C yr\(^{-1}\) (Goodale et al., 2002), about 12% of the annual emission of CO\(_2\) by humans (Schimel et al., 2001). Human-caused and natural changes to forests and environmental conditions have resulted in significant effects on the global carbon cycle. For example, large releases of carbon to the atmosphere have been reported from tropical deforestation (Canadell et al., 2007), fire (Turetsky et al., 2011), and insect outbreaks (Kurz et al., 2008b).

Insects and pathogens are agents of significant disturbance in North American forests. Many outbreaks are highly localized, but some range across millions of hectares and may affect up to 45 times the area of wildfire (Dale et al., 2001). These disturbances cost an average of $1 500 000 000 annually in the United States, five times that of wildfire (Dale et al., 2001). Wood volume lost to insects and disease in Canada from 1977 to 1987 (103 Mm\(^3\) yr\(^{-1}\), equally split between insects and disease) was nearly 2/3 of harvest volume and greatly exceeded that from fire (36 Mm\(^3\) yr\(^{-1}\)) (Fleming, 2000). The large areas of tree mortality or reduced tree growth resulting from major epidemics imply substantial impacts to the North American carbon cycle.

Climate is an important driver of insect and disease outbreaks through direct impacts on the disturbance agent as well as increased susceptibility to potential host trees in times of drought (e.g., Ayres & Lombardero, 2000; Raffa et al., 2008). Future climate change, principally warming, is expected to alter insect and pathogen epidemics (Bentz et al., 2010; Sturrock et al., 2011). Thus, important potential feedbacks exist between climate change and biotic disturbances through the carbon cycle.

Here, we review and synthesize the effects of forest insect and disease disturbances on carbon cycling in the United States and Canada. We focus on major biotic disturbance events, which we define as large (>100 km\(^2\)) areas of forest affected by insects or disease over time scales less than a decade. We do not consider smaller disturbance events or background herbivory or disease, which we recognize as important, but instead concentrate on those outbreaks with significant, discrete impacts to US and Canadian carbon cycling. Our review is written for carbon cycle scientists interested in learning more about biotic disturbances and for scientists and land managers familiar with insects and pathogens who want to learn more about how these agents affect carbon stocks and fluxes in forests. We first describe the major insect and pathogen disturbance agents in US and Canadian forests and their extent in the region, then discuss interactions with other disturbance agents. We review the impacts to the carbon cycle, including expected responses as well as studies that document the influence of insects and pathogens on carbon cycling. We end by identifying gaps in knowledge and describing tools available for closing these gaps.

Major forest insect and pathogen species

Types and extent

Recent outbreaks of insects and diseases have affected vast areas of forest in North America (Figs 1 and 2). Here, we discuss the major insects (Table 1) and pathogens (Table 2) of deciduous and coniferous forests in the United States and Canada that have substantial impacts on forests and thus large implications for forest carbon cycling.

Insects. Aerial survey records of forest damage by major insect species (Fig. 1) illustrate the large temporal variation in annual areas affected over the past few decades, both in Canada (Natural Resources Canada, 2009b) and the United States (USDA Forest Service, 2000, 2002, 2003a,b, 2004, 2005, 2006, 2007, 2009a; Natural Resources Canada, 2009b) The records show that there have been substantial differences in the timing, extent, and geographic location of outbreaks among species. At times, major outbreaks have affected a greater total area than fire (Kurz & Apps, 1999). The carbon impacts of these outbreaks differ based on the type of insect and whether or not outbreaks lead to tree mortality.

Two major groups of native insects are known to significantly impact carbon cycling. First, bark beetles (Coleoptera: Curculionidae: Scolytinae) feed within phloem and kill trees. Most important bark beetle species in North America are native. A few bark beetle species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) can kill healthy, unstressed trees and exert landscape-scale impacts. All of these tree-killing bark beetles have close associations with tree-infecting fungi, and most are host-specific at the level of tree genus.
Notable bark beetle species include mountain pine beetle, which attacks pines across western North America (Table 1). Major outbreaks have occurred in the recent past, with extensive epidemics ongoing in British Columbia, Alberta, and Colorado, among other locations (Kurz et al., 2008a; Natural Resources Canada, 2009a; USDA Forest Service, 2010). Large outbreaks are expected in the future as a result of stands that are in highly susceptible conditions and climate change that leads to a more suitable environment (Hicke et al., 2006; Krist et al., 2007; Kurz et al., 2008a; Bentz et al., 2010). Likewise, spruce beetle (Dendroctonus rufipennis Kirby) is considered the most important insect of spruce-fir forests in western North America and is one of the major biotic disturbance agents in Alaska (Berg et al., 2006; USDA Forest Service, 2009a). Southern pine beetle (Dendroctonus frontalis Zimmermann) occurs across the southeastern United States, attacking multiple species of pines over large areas, and is predicted to cause large losses (54 Mm²) of basal area in the next 15 years based on stand conditions (Krist et al., 2007). Various Ips species in combination with severe drought were responsible for a major mortality event in pinyon pine (Pinus edulis Engelm.) in the southwestern United States in the early 2000s (Breshears et al., 2005). Western balsam bark beetle (Dryocoetes confusus Swaine) has recently killed large numbers of subalpine fir [Abies lasiocarpa (Hook.) Nutt.] across the western United States (USDA Forest Service, 2010).

A second group, defoliators, also exerts substantial impacts on tree growth and mortality, but their effects on carbon cycling may differ substantially from those of bark beetles. The most common effects of folivory are reduced growth and reallocation of carbon, although repeated severe defoliation may cause tree mortality, resulting in similar modifications to C
cycling as tree-killing bark beetles (Elkinton & Liebhold, 1990; Candau et al., 1998). Most leaf-feeders are host-specific at the level of tree genus, but in North America, two major species, forest tent caterpillar (Malacosoma disstria Hubner) and the introduced gypsy moth (Lymantria dispar L.; discussed below), have very broad feeding ranges (Table 1). Forest tent caterpillar is a major defoliator of several deciduous trees, include aspen (Populus spp.), and has a wide distribution in North America. There have been relatively few reports of widespread mortality following defoliation by this insect (Volney & Fleming, 2000) except in areas experiencing unusually frequent, multi-year defoliation such as northeastern Ontario (Candau et al., 2002; Man & Rice, 2010). Severe defoliation in combination with climatic factors such as drought has also been implicated as a major cause of increases in the decline of aspen (Hogg et al., 2002, 2008) and other forest types in parts of North America (Allen et al., 2010). Hemlock looper (Lambdina fiscellaria (Guen.)) undergoes intermittent outbreaks in the United States and Canada (Iqbal et al., 2011) and can cause 32–100% mortality after only a few years of defoliation (MacLean & Ebert, 1999).

Budworms are defoliating insects that feed primarily on the buds of new conifer needles. Eastern spruce budworm (Choristoneura fumiferana [Clem.]) causes more damage than any other insect in North America’s boreal forests (Volney & Fleming, 2000). Western spruce budworm (Choristoneura occidentalis Freeman) is considered the most widely distributed and destructive conifer defoliator in western North America (Fellin & Dewey, 1982). Extensive jack pine budworm (Choristoneura pinus Freeman) outbreaks occur in jack pine forests in Canada and the US east of the Rocky Mountains (Volney, 1994; Natural Resources Canada, 2009b), with reductions in growth reaching 75% in severely infested stands (Gross, 1992) and affected trees becoming predisposed to subsequent lethal attacks by bark beetles (Wallin & Raffa, 2001).

Additionally, nonnative invasive insects from all feeding guilds have become increasingly important during the last century (Aukema et al., 2010). There is increasing evidence that invasive insects have a large impact on forest carbon cycling by altering disturbance regimes, nutrient cycling, and other processes in ecosystems where they have not co-evolved (Peltzer et al., 2010). Carbon cycle consequences have been studied for two important invasive insects. Gypsy moth is a defoliator that was established in the middle of the 19th century and spread throughout the eastern United States (USDA Forest Service, 2009a) and eastern Canada (Régnière et al., 2009). Hemlock woolly adelgid (Adelges tsugae Annand) is a major disturbance agent in forests of the eastern United States, attacking hemlocks (Tsuga spp.) and feeding on tree fluids. Hemlocks in this region have poor natural defenses against or tolerance of hemlock woolly adelgid, leading to high mortality probability from outbreaks.

Pathogens. A plant disease is defined as ‘any malfunctioning of host cells and tissues that results from continuous irritation by a pathogenic agent or environmental factor and causes symptoms’ (Agrios, 2005). Here, we focus on pathogens, including infectious diseases (Table 2). Forest pathogens are taxonomically diverse and include fungi, bacteria, viruses, nematodes, and
Table 1 Insect species that cause major impacts to the North American carbon budget

<table>
<thead>
<tr>
<th>Insect type</th>
<th>Insect species</th>
<th>Host tree species</th>
<th>Origin</th>
<th>Major outbreak examples (see also Fig. 1)</th>
<th>US basal area risk (million m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark beetles</td>
<td>Mountain pine beetle (<i>Dendroctonus ponderosae</i> Hopkins)</td>
<td>Pines of western North America</td>
<td>Native</td>
<td>• 1930s: 200 000 ha, Idaho<sup>a</sup> • 1970s–1980s: 2 Mha, western United States<sup>b</sup> • 2000s: 12 Mha, western Canada<sup>c</sup></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Spruce beetle (<i>Dendroctonus rufipennis</i> Kirby)</td>
<td>Spruces of western and northeastern North America</td>
<td>Native</td>
<td>• 1990s: 1.5 Mha, Alaska<sup>d</sup> • Current: 112 000 ha, Alaska<sup>e</sup></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Western balsam bark beetle (<i>Dryocoetes confusus Swaine</i>)</td>
<td>Subalpine fir [<i>Abies lasiocarpa</i> (Hook.) Nutt.]</td>
<td>Native</td>
<td>• Mid-1980s: 10.5 Mha<sup>f</sup> (different system for area; see<sup>j</sup>) • Early 2000s: 5 Mha<sup>j</sup></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Southern pine beetle (<i>Dendroctonus frontalis Zimmermann</i>)</td>
<td>Pines of the southern United States (<i>Pinus</i>)</td>
<td>Native</td>
<td>• 2000s: 1.2 Mha, southwestern United States<sup>e</sup></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Conifer engraver species (<i>Ips</i> spp.)</td>
<td>Pines and spruces throughout North America (<i>Pinus and Picea</i>)</td>
<td>Native</td>
<td>• Ongoing: 20 000 ha, western United States<sup>e</sup></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Fir engraver beetle (<i>Scolytus ventralis LeConte</i>)</td>
<td>True firs (<i>Abies</i>)</td>
<td>Native</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defoliators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern spruce budworm (<i>Choristoneura fumiferana</i> [Clem.])</td>
<td>Firs (<i>Abies</i>), spruces (<i>Picea</i>)</td>
<td>Native</td>
<td>• 1940s: 16 Mha, eastern Canada<sup>a</sup> • 1970s–1980s: 20 Mha, eastern Canada<sup>b</sup></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Western spruce budworm (<i>Choristoneura occidentalis</i> Freeman)</td>
<td>Firs (<i>Abies</i>), spruces (<i>Picea</i>), Douglas-fir [<i>Pseudotsuga menziesii</i> (Mirb.) Franco]</td>
<td>Native</td>
<td>• 1980s: 5 Mha, western United States<sup>c</sup> • Ongoing: 769 000 ha, western United States<sup>e</sup></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Gypsy moth (<i>Lymantria dispar</i> L.)</td>
<td>Multiple trees species throughout northeastern United States; primarily angiosperms but also <i>Larix</i> and <i>Pinus strobus</i> L.</td>
<td>Invasive</td>
<td>• Early 1980s: 5.3 Mha, northeastern United States<sup>e</sup> • Ongoing: 60 000 ha, northeastern United States<sup>e</sup></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Forest tent caterpillar (<i>Malacosoma disstria</i> Hubner)</td>
<td>Broadleaf species in North America</td>
<td>Native</td>
<td>• Early 2000s • Central United States: 2.8 Mha • Canada: 14 Mha<sup>d</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fluid feeders</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hemlock woolly adelgid (<i>Adelges tsugae</i> Annand)</td>
<td>Hemlock (<i>Tsuga spp.</i>)</td>
<td>Invasive</td>
<td>• Ongoing and expanding; in 17 states in eastern United States<sup>e</sup></td>
<td></td>
</tr>
</tbody>
</table>
parasitic plants. Fungal pathogens, which are the most common causes of forest diseases, are primarily in the phyla Basidiomycota and Ascomycota (Durall et al., 2005). Many forest pathogens are specific to a host genus (e.g., Cronartium ribicola J.C. Fisch on Pinus spp.), others have a wide host range including both coniferous and deciduous species (e.g., Armillaria spp.), and a few are host species specific (e.g., most dwarf mistletoes).

The effects of some forest pathogens on carbon cycling may be similar to those of defoliating or fluid-feeding insects, i.e., reductions in tree growth (Tkacz & Hansen, 1982; Hansen et al., 2000; Woods et al., 2005), and some pathogens kill stressed or weakened trees. However, other pathogens, especially root pathogens, are able to kill vigorous, dominant trees. The hyphae of vascular wilt and some blue-stain or sapstain fungi kill trees by plugging their hosts’ water- and nutrient-conducting tissues (Six & Wingfield, 2011). Foliar pathogens can defoliate trees, thereby reducing photosynthetic capacity and causing concomitant growth loss. In some cases, foliar pathogens damage trees by causing branch and stem deformation. The hyphae of vascular wilt and some blue-stain or sapstain fungi kill trees by plugging their hosts’ water- and nutrient-conducting tissues (Six & Wingfield, 2011). These fungi are often vectored by insects, such as in the case of Dutch elm disease, a pathosystem that includes species of Ophiostoma and two species of bark beetles. Root disease fungi such as Armillaria spp. and Heterobasidion spp. initiate infection mostly underground on roots, often originating from inoculum residing on intact, infected stumps. Many of these pathogenic root fungi have long-term impacts on tree growth and survival and on overall forest productivity (Klepzig et al., 1991; Cruickshank, 2000; Cruickshank et al., 2009). Rust fungi require live hosts and usually two taxonomically unrelated hosts to complete their life cycle. To date, the most important rusts in North American forests are the stem and cone rusts of

Table 1 (continued)

<table>
<thead>
<tr>
<th>Insect type</th>
<th>Insect species</th>
<th>Host tree species</th>
<th>Origin</th>
<th>Major outbreak examples (see also Fig. 1)</th>
<th>US basal area risk (million m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood borers</td>
<td>Emerald ash borer (Agrilus planipennis Fairmaire)</td>
<td>Ash spp. (Fraxinus spp.)</td>
<td>Invasive</td>
<td>• Introduced in 2002; ongoing outbreak threatening species extirpations¹</td>
<td>5</td>
</tr>
<tr>
<td>Root feeders</td>
<td>Weevils (Curculionidae spp.)</td>
<td>Maple (Acer), birch (Betula)</td>
<td>Invasive</td>
<td>• 15% of fine root biomass of northern hardwood forests in upper Midwestern United States consumed annually²</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹Estimates of basal area loss in the next 15 years for the United States (table 3 in Krist et al., 2007); similar standardized estimates not available for Canada or Mexico.
²http://www.usu.edu/beetle/databases_bark_beetle.htm.
³USDA Forest Service (2009b).
⁴Natural Resources Canada (2009b).
⁵USDA Forest Service (2009a).
⁶For southern pine beetle, all acres within a county were counted if that county contained a single infested tree.
⁷Breshears et al. (2005).
⁸Candau et al. (1998).
⁹USDA Forest Service (2005).
¹¹Coyle et al. (2008).
<table>
<thead>
<tr>
<th>Pathogen type</th>
<th>Disease name (pathogen species)</th>
<th>Host tree species</th>
<th>Origin</th>
<th>Examples of major epidemics and/or long-term perturbations and impacts</th>
<th>US basal area risk (million m²)</th>
</tr>
</thead>
</table>
| Canker | Chestnut blight \[Cryphonectria parasitica (Murrill) Barr.\] | American chestnut \[Castanea dentata (Marshall) Borkhausen\] | Invasive | • 1920s: 3.5 billion trees infected \(^a\)
• 1950s: 3.6 Mha dead or dying \(^b\)
• C. dentata extirpated from its original range \(^c\)
• 1970: most of the NE United States and SE Canada affected \(^d\)
• 1977: Vermont lost 708 000 cubic m \(^e\) | Host extirpated |
| | Beech bark disease \[Neonectria spp.\] | American beech \[Fagus grandifolia Ehrh.\] | Invasive | • 1970: most of the NE United States and SE Canada affected \(^d\)
• 1977: Vermont lost 708 000 cubic m \(^e\) | 7 |
| Foliar | Red band needle blight \[Dothistroma septosporum\] | Pines (Pinus) and other conifers | Native | • 2002–2004: 38 000 ha impacted, mortality of 2700 ha in NW BC \(^f\)
• Extensive mortality in plantations in BC \(^g\) | N/A |
| | Swiss needle cast \[Phaeocryptopus giumannii (Rohde) Petrak\] | Douglas-fir \[Pseudotsuga menziesii (Mirb.) Franco\] | Native | • 2010: 160 000 ha affected in Oregon \(^h\)
• 2000: stands with the most severe SNC had volume growth loss of ca. 52% \(^i\) | N/A |
| Wilt | Dutch elm disease \[Ophiostoma ulmi (Buisman) Nannf and O. novo-ulmi\] | Elms (Ulmus spp.) | Invasive | • 1930–1973: widespread loss of large trees across NA \(^j\)
• 1990: 12.5% of CA commercial forest land is infested, annual losses of 262 000 cubic m \(^k\) | 1 |
| Root | Armillaria root disease \[Armillaria ostoyae\] | Mainly conifers | Native | • Responsible for volume losses of 2-3 Mm³ yr⁻¹ in Canada’s Pacific NW \(^l\)
• In some forests of western NA, 35% of annual tree mortality caused by Armillaria \(^m\) | 48 (all root diseases) |
| | Annosus root disease \[Heterobasidion annosum = Heterobasidion occidentale and Heterobasidion irregular\] | Many conifer and hardwood species | Native | • Infections range from 10% to 50%; in severe cases 30% of a stand may be killed \(^n\)
• 12.5% of CA commercial forest land is infested, annual losses of 262 000 cubic m \(^o\) | 48 (all root diseases) |
<table>
<thead>
<tr>
<th>Pathogen type</th>
<th>Disease name</th>
<th>Host tree species</th>
<th>Origin</th>
<th>Examples of major epidemics and/or long-term perturbations and impacts</th>
<th>US basal area risk(^c) (million m(^2))</th>
</tr>
</thead>
</table>
| Stem rust | Fusiform rust \[*Cronartium quercuum* (Berk.) Miyabe ex Shirai*] | Loblolly (Pinus *taeda*), slash (Pinus *elliottii* var. *elliottii*) pines | Native | • 1930s: recognized as problem in MS and LA, regionally up to 30% of seedlings infected\(^a\)
• 1960–1970s disease incidence: 5.5 Mha affected >10%, 1 Mha >50%\(^b\)
• 1980–1990s disease incidence: >3 Mha affected >50%\(^c\)
• 1990–2000s disease incidence: >5 Mha affected >50%\(^d\) | 2 |
| | White pine blister rust \[*Cronartium *ribicola* J.C. Fisch ex Raben*] | Five-needle pines (Pinus spp.) | Invasive | • In northern Idaho, trees decreased 90% where previously dominant\(^e\)
• 0.6 Mm\(^3\) estimated mortality loss in Canada, 1976\(^f\) | 2 |
| Dwarf mistletoe | *Arceuthobium* spp. | Pinaceae and Cupressaceae | Native | • In Canada, 3.5 Mm\(^3\) loss to growth reduction and mortality in 1981 and 1987\(^g\)
• In United States, 3.8 Mha, 11 Mm\(^3\) (10–50% of annual commercial harvest) lost/year in growth, mortality\(^h\) | 6 |
| Phytophthora | Sudden oak death \(*Phytophthora ramorum* sp. nov) | Numerous spp. identified as potential hosts | Invasive | • 1990s: in CA, caused mortality of >3 million oaks (*Quercus agrifolia* Née) and tanoaks (*Lithocarpus densiflorus* (Hook. & Arn.) Rehd.)\(^i\) | 5 |

\(^a\)Estimates of basal area loss in the next 15 years for the United States (table 3 in Krist *et al.*, 2007); similar standardized estimates not available for Canada or Mexico.
\(^b\)Agrios (2005).
\(^c\)Anagnostakis (1987).
\(^d\)Loo (2009).
\(^e\)Griffin *et al.* (2003).
\(^f\)Houston (1994).
\(^g\)Watt *et al.* (2008).
\(^h\)Woods *et al.* (2005).
\(^i\)http://www.cof.orst.edu/coops/sncc/2010Results.htm.
\(^j\)Mainwaring *et al.* (2005).
\(^l\)Morrison & Mallet (1996).
\(^m\)Sinclair *et al.* (2005).
\(^n\)Little & Browning (1989).
\(^o\)Marosy & Parmeter (1989).
\(^q\)Schmidt *et al.* (1986).
\(^r\)Anderson *et al.* (1986).
\(^s\)Neuenschwander *et al.* (1999).
\(^t\)Singh (1995).
\(^u\)Gill (1954).
\(^v\)Drummond (1982).
\(^w\)Goheen *et al.* (2006).
pines (Sinclair et al., 2005). Phytophthora species infect a wide variety of hosts and have been responsible for severe forest epidemics worldwide, such as the recent sudden oak death epidemic in California and Oregon caused by Phytophthora ramorum sp. nov. Dwarf mistletoes (Arceuthobium spp.) are parasitic vascular plants causing significant impacts to a range of conifer species in North America (Hawksworth & Wiens, 1970; Loomis et al., 1985; Singh, 1993; Geils et al., 2002; Brandt et al., 2004). Dwarf mistletoes reduce host growth and increase tree mortality and susceptibility to other damage agents.

Invasive pathogens tend to have more pronounced acute impacts than native species, and, when combined with invasive insects, pose a greater threat than native species to forest ecosystems stability in some areas (Lovett et al., 2006). For example, invasive pathogens causing such diseases as white pine blister rust, chestnut blight, and butternut canker are responsible for some of the most significant long-term changes to North American forests observed, including the functional extinction of a number of keystone taxa across all or most of their range (Loo, 2009).

Climate change and outbreaks

Climate is a major driver of insect and pathogen outbreaks. Temperature influences these disturbance agents in multiple ways. For insects, life stage development rates increase with temperature, potentially leading to a switch from a 2- or 3-year life cycle to a 1-year life cycle that results in faster population growth (Bentz et al., 1991, 2001) and population synchrony for mass attack, often required to overcome tree defenses (Raffa & Berryman, 1987; Logan & Powell, 2001). Other insects undergo an intrinsic resting state called diapause, which is triggered by low temperatures or shortened photoperiod and acts to maintain populations in life stages most suited for withstanding cold conditions (Tauber et al., 1986). Winter temperatures also affect population levels of insects through mortality of over-wintering life stages in cold conditions (Wygant, 1940; Régnière & Bentz, 2007). Pathogens similarly require temperatures above a minimum to grow and survive. However, pathogens are more directly affected by moisture (Desprez-Loustau et al., 2006); for most pathogens, moisture is necessary for reproduction and dispersal (Agrios, 2005).

Climate also influences outbreaks through the condition of potential host trees. Some insects and pathogens prefer or have easier access to stressed or low vigor trees, which may be less well defended against attack (Raffa et al., 2008). Hosts predisposed to attack by drought, caused by either lower precipitation and/or higher temperatures, often lead to population increases of bark beetles and latent pathogens (Raffa et al., 2008; Kliejunas et al., 2009; Bentz et al., 2010; Sturrock et al., 2011).

Anthropogenic emissions of greenhouse gases have resulted in a warming climate that has facilitated outbreaks in recent decades. Changes in both temperatures (e.g., Logan et al., 2003; Carroll et al., 2004; Manter et al., 2005; Berg et al., 2006) and moisture or drought (e.g., Breshears et al., 2005; Hebertson & Jenkins, 2008; Jung, 2009) have been associated with insect and pathogen outbreaks. Future projections predict warming and enhanced drought associated with climate change (IPCC, 2007), and thus patterns of insect and pathogen outbreaks are likely to change in response to projected climate change (e.g., Hicke et al., 2006; Venette & Cohen, 2006; Kliejunas et al., 2009; Bentz et al., 2010; Sturrock et al., 2011).

Disturbance interactions

Insect or pathogen impacts are best understood within the context of interactions with other biotic and abiotic agents. Predators and pathogens of biotic agents reduce population levels, and competition among species can affect populations. Symbiotic interactions also occur. Root pathogens, root herbivores, and defoliators can predispose trees to attack by bark beetles and wood borers (Wallin & Raffa, 2001), and defoliators can release latent pathogens such as some species of Armillaria. Insects are frequently the vectors for pathogen dispersal, e.g., symbioses between fungi [Ophiostoma montium (Rumbold) von Arx, Grosmannia clavigera] and Dendroctonus bark beetles (Bleiker & Six, 2007), and conversely trees whose defenses are compromised by pathogens or fire also become more susceptible to insects (Klepezig et al., 1995; Lombardero et al., 2006).

The term ‘forest decline’ describes stands and/or landscapes where trees, typically of a single species, progressively lose vigor and often die, frequently due to a complex of abiotic and biotic factors (Klepezig et al., 1991; Manion & Lachance, 1992). Although declines are not solely caused by biotic agents, insects and pathogens may amplify the effects of the predisposing stress factors (McDowell et al., 2008; Raffa et al., 2008). A current example is the increasing area of sudden aspen decline in western North America, which appears to be caused by a combination of drought stress and defoliation and stem damage by insects and pathogens (Worrall et al., 2008, 2010), and can result in widespread, cumulative mortality (Michaelian et al., 2011).

Insects and pathogens interact with several abiotic disturbances. Over the past few decades there have been significant, increasing trends in reports of
drought- and heat-related forest die-off events (Allen et al., 2010) as well as in background tree mortality rates (van Mantgem et al., 2009; Dietze & Moorcroft, 2011) in which biotic agents played a role. Outbreaks interact with wildfire in two ways (Parker et al., 2006; Romme et al., 2006; Jenkins et al., 2008). First, outbreaks may kill trees, thereby modifying fuels and fire characteristics in complex patterns that vary with time since outbreak (e.g., Fleming et al., 2002; Jenkins et al., 2008; Bentz et al., 2009). Second, fires may affect the likelihood and severity of insect and pathogen outbreaks by altering species composition or stand structure in the long term as well as by injuring surviving trees in the short term and predisposing them to secondary host infection (Parker et al., 2006; Simard et al., 2008). Interactions also occur between biotic disturbances and wind. Windthrow (and other disturbances) provide a source of stressed trees that allow bark beetles such as Douglas-fir beetle to build to epidemic levels (Schmitz & Gibson, 1996). Nonhost tree species may be more exposed to wind during large-scale defoliator outbreaks. Pathogens can also increase the risk of wind damage by weakening stems or roots (Papaik et al., 2005).

Expected responses of carbon stocks and fluxes

In this section, we describe general patterns of carbon cycle responses following biotic disturbances based on direct impacts on trees as well as understanding of forest processes following different disturbance types (Odum, 1969; Fleming et al., 2002; Hicke et al., 2003; Litvak et al., 2003; Kashian et al., 2006) (Fig. 3). Documented C cycle impacts then describes studies that support these responses. First, biotic disturbances reduce gross primary productivity (GPP; see Table 3 for C cycle definitions) of stands through defoliation or other growth reductions or tree mortality. Second, trees killed by aggressive bark beetles or repeated growth reductions alter carbon cycling through increases in heterotrophic respiration (R_h). Growth reductions over several years reduce carbon transfer to dead organic matter pools, which subsequently reduces R_h. In addition, killed trees generate a large amount of dead organic matter, some of which begins to decay immediately. Carbon in more labile structures such as leaves is released to the atmosphere first, although in killed conifers, needles remain on the dead trees for 1–3 years

![Fig. 3 Conceptual diagram showing impacts of insect and pathogen outbreaks on carbon budgets. Numbers outside of boxes reference studies in Tables 4 and 5 that provide evidence. Studies that provide evidence counter to that indicated in diagram noted in bold underlined text (two cases).](https://example.com/fig3.png)
following bark beetle attack, delaying this decomposition. Snags remain standing for decades following tree death (e.g., Mielke, 1950), further delaying decomposition. As a result of these processes as well as the long decay time of wood, the release of carbon through decomposition following disturbance occurs over a period of decades to centuries (Harmon et al., 1986; Busse, 1994).

Reductions in net primary productivity (NPP) and increases in decomposition of dead organic matter affecting heterotrophic respiration (R_h) result in large reductions of net ecosystem productivity (NEP). The amount of change of these individual fluxes and therefore of the net C flux is determined by the magnitude of an outbreak’s impact on stands. For severe outbreaks, the magnitude of the effect may be large enough to cause a stand to switch from a carbon sink to a carbon source in a manner similar to the effects of wildfire (Fleming et al., 2002; Kurz et al., 2008a; Dymond et al., 2010).

Other impacts to C cycling beyond reductions in productivity and increases in decomposition exist. During outbreaks, defoliators consume C in leaves and release large fluxes of nitrogen, carbon, and other nutrients into forest ecosystems through leaf fragments, frass, and exuviae (Frost & Hunter, 2004). Moderate to severe outbreaks alter functional attributes of the ecosystem (e.g., light regime, water availability and loss, nutrient cycling) in a way that affects the trajectory of succession and recovery. Outbreaks severe enough to modify soil moisture and nutrients, for example, cause changes in tree density or species composition such that long-term carbon storage or the rate of carbon cycling is also altered. At longer temporal and broader spatial scales, carbon loss to the atmosphere and altered hydrologic processes following severe outbreak areas may drive climate feedbacks that could affect the frequency and severity of future insect or pathogen outbreaks, although such feedbacks have yet to be quantified. Finally, killed trees resulting from insect and pathogen outbreaks interact with other disturbances to affect carbon cycling, particularly with fire and wind damage (see discussion above).

Biotic disturbances that cause extensive tree mortality may be comparable to fires in terms of impacts to carbon cycling (Fleming et al., 2002; Kashian et al., 2006). Many biotic disturbances have less immediate impacts than fires, such as defoliation events that kill trees only after several consecutive years of attack (Fleming et al., 2002). Other outbreaks, such as those of some bark beetles, can kill many trees within a stand within 1 year, acting more similar to fire. Differences exist, however:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon stocks</td>
<td>g C or g C m^−2</td>
<td>Reservoirs of carbon in various tree and soil pools such as stem, foliage, roots, and soil organic matter</td>
</tr>
<tr>
<td>Carbon fluxes</td>
<td>g C m^−2 yr^−1</td>
<td>Transfers between pools of carbon, including those in the ecosystem and the atmosphere</td>
</tr>
<tr>
<td>Gross primary production (GPP)</td>
<td>g C m^−2 yr^−1</td>
<td>Total amount of atmospheric C fixed by plants</td>
</tr>
<tr>
<td>Autotrophic respiration (R_a)</td>
<td>g C m^−2 yr^−1</td>
<td>Release of C to the atmosphere by plants</td>
</tr>
<tr>
<td>Heterotrophic respiration (R_h)</td>
<td>g C m^−2 yr^−1</td>
<td>C released by microbes through decomposition</td>
</tr>
<tr>
<td>Net primary production (NPP)</td>
<td>g C m^−2 yr^−1</td>
<td>GPP − R_a; the net amount of carbon fixed by plants and available for subsequent use by heterotrophs</td>
</tr>
<tr>
<td>Net ecosystem production (NEP)</td>
<td>g C m^−2 yr^−1</td>
<td>NPP − R_h; positive when ecosystems are sinks of C</td>
</tr>
<tr>
<td>Net ecosystem exchange (NEE)</td>
<td>g C m^−2 yr^−1</td>
<td>Exchange of carbon between the ecosystem and the atmosphere; positive when there is a net transfer of C to the atmosphere and is often the same as (but opposite in sign to) NEP</td>
</tr>
<tr>
<td>Net biome production (NBP)</td>
<td>g C m^−2 yr^−1</td>
<td>Flux of C to/from ecosystems; includes NEP as well as losses of C through such processes as combustion or leaching</td>
</tr>
</tbody>
</table>
fires result in an immediate release of some carbon to the atmosphere via combustion; severe fires kill non-host species, understory trees, shrubs, and herbs in addition to host trees; and although outbreaks modify some soil properties such as biogeochemical cycling (e.g., le Mellec & Michalzik, 2008; Morehouse et al., 2008), fires can also cause microbial mortality through heating, increase weathering rates, reduce surface albedo, and modify infiltration and runoff rates (Neary et al., 2005).

Documented C cycle impacts

Characteristics of studies

To facilitate comparison and synthesis, studies were summarized by insects (Table 4) and pathogens (Table 5) and organized along key factors (Figs 3 and 4) that included the type of insect or pathogen (especially whether or not the damage agent killed trees); the severity of disturbance in terms of the number of trees attacked within a stand and the amount of tree mortality; the time since disturbance; the methods of the study and the C variable(s) studied; and the existence and type of study controls that illustrate effects relative to unaffected stands or preoutbreak conditions. We identified 19 studies that assess impacts to US and Canadian carbon cycling by insect outbreaks (Table 4) and six studies that documented impacts by pathogens (Table 5). The insect studies were roughly divided among bark beetles, defoliators, and hemlock woolly adelgid, a fluid feeder. Multiple studies of mountain pine beetle, spruce budworm, forest tent caterpillar, gypsy moth, and hemlock woolly adelgid have been published. Two studies included multiple species (of insects) (Kurz & Apps, 1999; Stinson et al., 2011).

Most studies were field observations of productivity or carbon cycling (Romme et al., 1986; Jenkins et al., 1999; Kizlinski et al., 2002; Forrester et al., 2003; Morehouse et al., 2008; Nuckolls et al., 2009; Pfeifer et al., 2011), including eddy covariance tower measurements (Cook et al., 2008; Hadley et al., 2008; Brown et al., 2010; Clark et al., 2010). As such, there was an emphasis on tree to stand scales. Analyses of eddy covariance tower observations were opportunistic (i.e., unplanned) (Cook et al., 2008; Clark et al., 2010), although in one case, study sites were selected specifically to investigate mountain pine beetle impacts (Brown et al., 2010). The pathogen studies addressed leaf to plot scales.

Several investigations used carbon cycle models informed by or parameterized with field observations and concentrated on recent times since outbreak (Cook et al., 2008; Schäfer et al., 2010). A few studies estimated regional impacts using upscaling of finer scale results, simulation modeling, or remote sensing (Kurz & Apps, 1999; Hicke et al., 2002; Kurz et al., 2008a; Albani et al., 2010; Clark et al., 2010; Dymond et al., 2010; Hennigar & MacLean, 2010; Stinson et al., 2011), and several assessed effects on time scales of decades to centuries (Hogg, 1999; Kurz & Apps, 1999; Kurz et al., 2008a; Dymond et al., 2010; Hennigar & MacLean, 2010; Pfeifer et al., 2011).

Fifteen studies addressed some aspect of tree growth. Nine studies quantified responses of the net carbon flux, through eddy covariance methods or simulation modeling. Several studies investigated other aspects of carbon cycling, such as C stocks or soil respiration. Overall, the studies summarized in Tables 4 and 5 identified the types and levels of impact that can be expected from insect and pathogen outbreaks to C. These studies also illustrated the difficulty in drawing definitive broad-scale conclusions regarding specific species as a result of the varying spatial extents, time since disturbance, severity of outbreak, and diversity of carbon variables analyzed to date (Fig. 4).

Carbon cycle responses

Immediately following attack, insects and pathogens often caused reductions in tree- and stand-level primary productivity or C stocks (Romme et al., 1986; Hogg, 1999; Forrester et al., 2003; Manter et al., 2003; Meinzer et al., 2004; Cook et al., 2008; Morehouse et al., 2008; Nuckolls et al., 2009; Clark et al., 2010; Dymond et al., 2010; Hennigar & MacLean, 2010; Lovett et al., 2010; Schäfer et al., 2010; Busby & Canham, 2011; Pfeifer et al., 2011), although one study of beech bark disease reported no change in aboveground NPP across a gradient of impact (Hancock et al., 2008). Productivity decreased by over 50% in some outbreaks of bark beetles, defoliators, and fluid feeders. Variability occurred as a result of outbreak severity (number of affected trees) within a study, suggesting that this factor was a major contributor to the reported range of decreases. Other factors such as type of disturbance agent, forest type, and consecutive years of disturbance also influenced responses.

Net ecosystem productivity decreased from stronger positive values (C sinks) to weaker positive values or switched to negative NEP values (C sources) (Kurz & Apps, 1999; Cook et al., 2008; Kurz et al., 2008a; Albani et al., 2010; Brown et al., 2010; Clark et al., 2010; Dymond et al., 2010; Stinson et al., 2011). Major NEP reductions occurred across biotic disturbance types, even for a very short-term defoliation event (Cook et al., 2008). Variability in NEP reduction immediately after attack was related to factors that cause a range of NPP responses (described above), the amount of killed
<table>
<thead>
<tr>
<th>Insect type</th>
<th>Insect species</th>
<th>Host type</th>
<th>Location</th>
<th>Methods</th>
<th>Spatial extent</th>
<th>Time since disturbance</th>
<th>Outbreak severity</th>
<th>Control</th>
<th>Carbon variable</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark beetles</td>
<td>Mountain pine beetle</td>
<td>Lodgepole pine (Pinus contorta Doug. ex Loud.)</td>
<td>British Columbia</td>
<td>2 years of field measurements 2006-2007</td>
<td>Two stands, MPB-03 and MPB-06</td>
<td>• MPB-03: 4-5 years</td>
<td>• >95% red- and gray-attack</td>
<td>• Year 1: 50% green-attack</td>
<td>• Year 2: 75% dead</td>
<td>NEP</td>
<td>Brown et al. (2010)</td>
</tr>
<tr>
<td>Yellowstone area</td>
<td></td>
<td></td>
<td></td>
<td>Simulation modeling</td>
<td>Regional</td>
<td>21 years during and following outbreak</td>
<td>Varies</td>
<td>Years prior to outbreak</td>
<td>NBP</td>
<td>Kurz et al. (2008a)</td>
<td></td>
</tr>
<tr>
<td>Central Idaho</td>
<td></td>
<td></td>
<td></td>
<td>Field measurements, simulation modeling of recovery</td>
<td>12 stands</td>
<td>100+ years following outbreak</td>
<td>18-52% number of trees</td>
<td>Prior to outbreak and uninfested control simulations</td>
<td>• Aboveground C stocks</td>
<td>• 18-70% immediate reduction</td>
<td>Pfeifer et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Ips and</td>
<td>Ponderosa pine (Pinus ponderosa)</td>
<td>Southwestern United States</td>
<td>Field measurements</td>
<td>10 infested</td>
<td>0-2 years following infestation</td>
<td>80%</td>
<td>10 uninfested plots</td>
<td>• Aboveground C stocks</td>
<td>• 60% in killed trees</td>
<td>Morehouse et al. (2008)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outbreak characteristics</th>
<th>Study characteristics</th>
<th>Study results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defoliators</td>
<td>Study type</td>
<td>Host type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Forest tent caterpillar outbreaks (with drought)</td>
<td>Aspen</td>
</tr>
<tr>
<td>7</td>
<td>Forest tent caterpillar outbreaks</td>
<td>Northern hardwood</td>
</tr>
<tr>
<td>8</td>
<td>Gypsy moth</td>
<td>Pine/oak</td>
</tr>
<tr>
<td>9</td>
<td>Eastern spruce budworm</td>
<td>Eastern forests</td>
</tr>
<tr>
<td>10</td>
<td>Eastern spruce budworm</td>
<td>Eastern forests</td>
</tr>
<tr>
<td>11</td>
<td>hemlock woolly adelgid</td>
<td>New Brunswick, Canada</td>
</tr>
<tr>
<td>12</td>
<td>hemlock woolly adelgid</td>
<td>Eastern hemlock species</td>
</tr>
<tr>
<td>Outbreak characteristics</td>
<td>Study characteristics</td>
<td>Spatial extent</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Insect type</td>
<td>Insect species</td>
<td>Host type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Field measurements</td>
<td>Six sites</td>
</tr>
<tr>
<td>14</td>
<td>Field measurements</td>
<td>Six infested sites</td>
</tr>
<tr>
<td>15</td>
<td>Southern United States</td>
<td>Field measurements</td>
</tr>
<tr>
<td>16</td>
<td>Eastern United States</td>
<td>Spread and ecosystem modeling</td>
</tr>
<tr>
<td>Multiple 17</td>
<td>Eastern spruce budworm, mountain pine beetle, jack pine budworm, hemlock looper</td>
<td>Various</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mountain pine beetle, spruce beetle, eastern hemlock looper, forest tent caterpillar, large aspen caterpillar</td>
<td>Various</td>
</tr>
</tbody>
</table>

*See Table 3 for explanation of abbreviations.
†Study identifier used in Fig. 3.
<table>
<thead>
<tr>
<th>Pathogen type</th>
<th>Pathogen species</th>
<th>Host type</th>
<th>Location</th>
<th>Outbreak characteristics</th>
<th>Study characteristics</th>
<th>Time since disturbance</th>
<th>Outbreak severity</th>
<th>Control</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canker 19†</td>
<td>Beech bark disease</td>
<td>American beech</td>
<td>Northeastern United States</td>
<td>Field observations</td>
<td>Eight plots</td>
<td>Unspecified</td>
<td>5–95% live beech by basal area, no information provided about % beech killed</td>
<td>Gradient of beech bark disease damage</td>
<td>Preoutbreak measurements</td>
<td>Aboveground NPP, Growing season soil CO₂ efflux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field observations during (1985) and after (2000) outbreak</td>
<td>49 plots</td>
<td>15 years</td>
<td>See biomass</td>
<td></td>
<td>No differences across disease gradient, Decreased by 40% in infested stands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field measurements; defined score to indicate disease progression</td>
<td>19 plots</td>
<td>Variable</td>
<td>Variable, most severe plot was 40% killed by basal area</td>
<td>Plots with limited impact</td>
<td></td>
<td>Aboveground live biomass of beech, Litterfall, % lignin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field measurements</td>
<td>Inventory plots in Maine, Pennsylvania, and Michigan</td>
<td>Various; earliest attack >50 years prior</td>
<td>Inferred from spatial gradient of initial attack by disease</td>
<td>Density of pathogen 0–70% of needle stomata</td>
<td>Uninfected control trees sprayed</td>
<td>Aboveground C stocks, Needle net assimilation, Whole-canopy net assimilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field measurements and modeling</td>
<td>Trees at three sites</td>
<td>Ongoing</td>
<td></td>
<td></td>
<td>11% reduction in locations with earliest attack, Negative needle net carbon balance when pathogen colonization >25% of stomata, Reduced by 85%</td>
<td>Manter et al. (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field measurements</td>
<td>Eight trees at one site</td>
<td>Ongoing</td>
<td>Five severely infested trees</td>
<td>Three uninfected trees</td>
<td>Maximum photosynthetic rates</td>
<td>In heavily infested trees, photosynthetic rate was half that of uninfested trees</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Field measurements</td>
<td>Trees at one site</td>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See Table 3 for explanation of abbreviations.
†Study identifier used in Fig. 3.
trees that affect decomposition fluxes, and the contribution of the understory to carbon uptake.

Substantial NEP responses occurred at local scales as well as regional scales during extensive tree mortality. Ecosystems became C sources following outbreaks as observed by eddy covariance towers (Brown et al., 2010; Clark et al., 2010). Epidemics with a substantial fraction of trees killed caused forests to become C sources at regional scales (Kurz & Apps, 1999; Kurz et al., 2008a; Dymond et al., 2010; Stinson et al., 2011). However, epidemics affecting only a minor amount of trees within a study area or epidemics that did not kill trees only reported reductions in sink strength, not a switch to a source (Albani et al., 2010; Clark et al., 2010). Thus, effects were dampened at larger scales as the percentage of affected trees decreased.

Studies’ conclusions about soil and forest floor C impacts varied, with some noting decreased carbon stocks, C:N values, and soil CO2 efflux in attacked stands compared with unattacked stands (Kizlinski et al., 2002; Hancock et al., 2008; Nuckolls et al., 2009; Lovett et al., 2010), and some reporting no change in one or more of these variables (Jenkins et al., 1999; Kizlinski et al., 2002; Morehouse et al., 2008; Lovett et al., 2010).

Insect and pathogen outbreaks can have long-term impacts to carbon cycling, though fewer studies addressed this. As with immediate effects, long-term dynamics varied by disturbance type. Localized studies indicated recovery of aboveground carbon stocks or NPP to preoutbreak values or unattacked stands within one to several decades (Romme et al., 1986; Forrester et al., 2003; Pfeifer et al., 2011). Following an outbreak, stand productivity can increase if the growth of surviving trees or understory accelerates after release from competition (Romme et al., 1986; Brown et al., 2010). However, this rapid recovery does not occur universally (Pfeifer et al., 2011). The speed and magnitude of the recovery of productivity depend critically on the size of the surviving trees. In particular, stands with large surviving trees (that already dominate light, water, and nutrient resources) and few smaller trees do not exhibit accelerated growth rates (Pfeifer et al., 2011). Recovery rates also are a function of the severity of the outbreak (number of trees affected) and seedling establishment rate (Pfeifer et al., 2011).

Regionally, reductions in NEP can also last decades when significant tree mortality occurs (Kurz et al., 2008a; Albani et al., 2010; Dymond et al., 2010; Stinson et al., 2011). Part of the effect is a result of the long period for growth and decomposition fluxes to return to preoutbreak values, as in the stand-level cases. However, another important aspect is that outbreaks may

last years at landscape and broader scales, with insect or pathogen populations moving across a region of interest, attacking different stands at different times (Kurz et al., 2008a; Albani et al., 2010; Dymond et al., 2010).

Responses of the carbon cycle are highly dependent on type of biotic disturbance. Several examples illustrate this point. A short-term (e.g., 1 month) outbreak of a defoliator can reduce NPP and therefore NEP within the year of the outbreak (Cook et al., 2008). However, defoliation is often followed by the development of new leaves that allow some photosynthesis during that growing season (Churchill et al., 1964; Cook et al., 2008), and trees are not killed, allowing recovery of NEP in subsequent years (Cook et al., 2008). In contrast, a bark beetle epidemic can kill many trees within a stand in 1 year (Morehouse et al., 2008; Brown et al., 2010; Pfeifer et al., 2011), altering carbon cycling for decades to centuries (Romme et al., 1986; Pfeifer et al., 2011). Pathogen and defoliator epidemics that occur over several years can kill trees (Candau et al., 2002; Dymond et al., 2010; Man & Rice, 2010), with similar long-term impacts as bark beetles. However, effects are more muted than bark beetle-caused tree mortality in the first few years during growth reduction (Fleming et al., 2002).

Although the focus of this paper is on the United States and Canada, we include here a brief review of the few relevant studies in other regions. Studies of short-term C cycling impacts based on eddy covariance tower observations reported reductions in photosynthesis and NEP for sap-sucking (Kirschbaum et al., 2007) and defoliating (Allard et al., 2008; Heliasz et al., 2010) insects. Carbon fluxes to the soil and C:N ratios in frass were greatly increased in areas attacked by pine lappet moth (Dendrolimus pini L.) (le Mellec & Michalzik, 2008; le Mellec et al., 2009), and a fungal pathogen reduced plant productivity following infection (Luque et al., 1999). These findings from Europe and Australia were consistent with those in North America.

Many studies have assessed responses of growth of trees and stands to insect and pathogen attack. These impacts have been reported in such variables as diameter increment, volume increment, or basal area (Gross, 1992; Filip et al., 1993; Mayfield et al., 2005; Fischer et al., 2010; Collins et al., 2011; Cruickshank et al., 2011; Iqbal et al., 2011). Similarly, studies have reported on the amount of mortality following epidemics, but results are variously described in terms of number of trees, volume, or basal area (Roe & Amman, 1970; Gross, 1992; Filip et al., 1993; Singh, 1993; Fleming, 2000; Harausz & Pimentel, 2002). Such studies improve our understanding of underlying mechanisms, thereby providing important information for carbon cycle science. However, these data are not easily converted into carbon units, making comparisons among studies and inclusion in carbon cycle models difficult.

Several studies have noted regional forest management implications of bark beetle outbreaks. Kurz et al. (2008b) described the significant implications of the 1990 baseline used by the UN Framework Convention on Climate Change for forest carbon stocks, a time when Canadian insect outbreaks were minimal. Subsequent insect outbreaks caused managed forests to switch from a carbon sink to a source, with net fluxes approaching 30% of fossil fuel emissions, influencing Canada’s decision about forest C management under the Kyoto Protocol. Using simulation modeling, Seidl et al. (2008) show that the interaction of European spruce bark beetle (Ips typographus L.) outbreak severity and climate change strongly modifies future carbon stocks of central European Norway spruce [Picea abies (L.) Karst.] forests.

Knowledge gaps

Our review of published studies indicates substantial gaps in knowledge (Table 6). We have limited understanding of the spatial and temporal characteristics of insect and pathogen outbreaks. Aerial surveys undertaken annually in the United States and Canada provide information about general trends for some major insect species and are rich in spatial, temporal, and attribute information. However, these data sets have limitations associated with extent, subjectivity, and attribute information, have not been collated into a consistent database in Canada, and have large uncertainties (see Aerial surveys and satellite remote sensing below). Even if impact areas were well known, uncertainties exist on how to convert area or number of affected trees to metrics important for carbon cycle studies (e.g., leaf area or carbon pools). This conversion is particularly challenging for growth reducers such as defoliators that may kill trees only after multiple, consecutive years of damage or from which trees often recover. For the many insects and pathogens that do not kill trees, identification of impacts on carbon cycling based on affected area is very difficult because these disturbances often progress slowly, making detection difficult, and we lack much understanding of their effect on trees.

For most species, we lack knowledge of life history traits and drivers that can be incorporated into predictive modeling. For a small number of economically important insect or pathogen species in the United States and Canada, predictive models of a specific climate driver (e.g., winter temperature) have been developed (e.g., Thomson et al., 1984; Wilder, 1999; Hansen et al., 2001; Logan et al., 2003; Tran et al., 2007; Gray,
Table 6 Summary of gaps in knowledge

<table>
<thead>
<tr>
<th>Topic</th>
<th>Knowledge gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance agents</td>
<td>Spatial area, severity (number of trees attacked within an area or amount of damage to a tree), distribution] and temporal (duration) characteristics of biotic disturbances Knowledge of life history traits and drivers for predictive modeling Predictive capability of invasions by exotic species Interactions with and predisposition to other disturbances including biotic and abiotic factors (particularly fire and drought)</td>
</tr>
<tr>
<td>Carbon cycling</td>
<td>Conversion of outbreak area or number of affected trees to carbon variables Impact of outbreaks that do not lead to tree mortality on productivity and carbon cycling Replication of studies Impacts of pathogen outbreaks Responses of carbon pools and fluxes following different types and severities of outbreaks Landscape- to continental-scale impacts, particularly in United States Biotic disturbances in many carbon cycle models</td>
</tr>
</tbody>
</table>

The interactions between drought and heat stress and biotic disturbances as drivers of tree mortality events are poorly understood – there is currently only limited mechanistic knowledge of the physiological processes, thresholds, and linkages involved (McDowell et al., 2008; Adams et al., 2009; Breshears et al., 2009; Bentz et al., 2010; Carnicer et al., 2011; Sturrock et al., 2011). Biotic disturbance and wildfire interactions are also important and require additional study (Fleming et al., 2002; Jenkins et al., 2008). Other feedbacks that have received little attention include how large-scale outbreaks of biotic agents might affect such biophysical processes such as leaf area, forest transpiration/stomatal conductance, and albedo (Hogg et al., 2000; Bonan, 2002; Adams et al., 2010). Modifications to these processes drive changes in surface energy and water budgets (Adams et al., 2011), affecting local and regional weather and climate patterns (including amplification of drought and heat stress).

General conclusions about C cycle processes are subject to large uncertainty as a result of the lack of replicated studies. Few studies of impacts on carbon cycling exist, limiting comparisons among studies. Furthermore, replicating impacts of similar insect/pathogen and host type under similar conditions, particularly amount of defoliation and/or mortality and time since disturbance, is challenging (Fig. 4). For example, whether a bark beetle-infested stand is a net C source or sink depends on the extent of tree mortality, number and size of surviving trees, spatial pattern of mortality, and time since outbreak, among other processes. Attempts to match conditions among published studies currently yield very few meaningful comparisons (Tables 4 and 5). Future comparisons will be facilitated if studies report detailed information about the variables in these tables.

The lack of existing C cycle studies implies several gaps in knowledge. The majority of existing studies concern insect outbreaks; very few studies of pathogen outbreak impacts on the C cycle have been reported. Even so, the insect species studied are primarily mountain pine beetle, hemlock wooly adelgid, gypsy moth, forest tent caterpillar, and eastern spruce budworm. More studies are needed to quantify the changes in carbon pools and fluxes associated with different types and severities of outbreaks. These changes include the direct effects on C stocks and fluxes, such as reductions of GPP, loss of leaf area, and changes in within-plant C allocation patterns. Efforts to assemble and convert published reports of effects of insects and pathogens in units such as volume or basal area to carbon units for comparison among studies are needed, and in some cases, older reports require updating (e.g., Singh, 1993). In addition, little is known about the decomposition
rates of leaves, roots, and fine and coarse woody debris, significant because of the large amount of dead organic matter generated by some biotic disturbances. Snagfall rates influence the rate of dead wood decomposition, yet these rates and drivers are little known. A wide range of snagfall rates following biotic disturbances has been reported, from 50% of killed trees down after 9 years (Mitchell & Preisler, 1998) to 16% down after 25 years (Mielke, 1950); such a broad range has significant implications for carbon cycling (Busse, 1994). Seedling establishment following outbreaks is likewise poorly quantified. The size and number of surviving trees is key to determining how rapidly postoutbreak NPP increases, yet we have little information about how these factors vary within and among outbreaks. Studies of indirect effects and ecosystem feedbacks leading to influences on C cycling, such as changes in microclimate, albedo, and species composition, are needed, as are studies that link changes in carbon cycling to subsequent climate change. Finally, a better understanding of the role of wood decay organisms that do not cause widespread disturbances will lead to a more complete understanding of effects on carbon cycling.

Some information on landscape- to continental-scale impacts on carbon budgets exists, particularly for insects in Canada (Table 4). However, effects of many major, large-scale insect and pathogen outbreaks in the United States have not been studied. In addition to North America, extensive forest dieoff events on other continents have been reported, due in part to biotic disturbance (Allen et al., 2010), suggesting major modifications to carbon stocks and fluxes in these other regions that have yet to be quantified.

Biotic disturbances are missing from most carbon cycle models, and therefore effects of historical and future outbreaks have been evaluated in relatively few instances. To avoid double counting, models that explicitly represent biotic disturbances need to be parameterized with observations that do not include these disturbances (e.g., growth models based on inventory databases). The development of fully integrated predictive models of outbreaks, as discussed above, will expand the capacity of carbon cycling models to assess future impacts. Key challenges remain in conceptualizing the level of complexity needed to accurately constrain carbon cycle impacts from insect and pathogen outbreaks.

Available tools

Field observations

Field observations form a critical set of tools for evaluating impacts. Advantages include providing precise, accurate, and complete information at fine spatial scales of tree physiology, insect and pathogen identities and population levels, and carbon cycle responses, which are essential for mechanistic understanding. At larger scales, some networks such as the USDA Forest Service Forest Inventory and Analysis (FIA) program can be used for assessing mortality and impacts to C cycling following outbreaks (Thompson, 2009a,b; Busby & Canham, 2011). Dendrochronological methods are useful for assessing forest impacts over longer time periods (e.g., Swetnam & Lynch, 1993; Axelson et al., 2009). Methods and tools available for understanding processes associated with C cycle impacts using field observations are well established.

Several notable challenges exist when using field observations. Major biotic disturbances are relatively uncommon in time and space (e.g., USDA Forest Service, 2010), and we currently lack the capability to generate accurate short-term predictions of locations of these disturbances at local spatial scales. In the case of insects, this capability can be improved by deploying pheromones and host volatiles that attract target species into systematically arranged traps (e.g., Grant, 1991). Establishing a control for comparison of effects may be also a challenge, whether in time (forecasting an outbreak to obtain preoutbreak measurements) or space (finding similar stands and environmental conditions). Developing chronosequences of time since disturbance that substitute space for time requires identification of similar stands with similar levels of impact across decades (Amiro et al., 2010). However, selecting older stands becomes more difficult as the biotic disturbance evidence (e.g., affected trees or indicators of insect or pathogen attack) fades with time. Ground surveys are costly and require personnel in the field timed when outbreaks are most visually obvious, and thus are both limited in scope and constrained by logistical considerations. For measuring carbon cycling with eddy covariance towers, mountainous terrain induces advective air flows within and above the canopy that may pose significant challenges for interpreting results (Yi et al., 2008; Sun et al., 2010). In addition, quantifying the effects of variation in outbreak severity that may occur within the spatially variable footprint of a given tower is important but difficult.

Aerial surveys and satellite remote sensing

Aerial surveys record observations about forest disturbances that include spatial location, areal extent, severity, and host. The resulting databases extend back many years, and are produced by trained observers delineating damaged areas from aircraft (Ciesla, 2000; McConnell et al., 2000). In the United States, regional
data from the annual Aerial Detection Survey program are available from 1997 to the present, with regional subsets available further back in time (e.g., USDA Forest Service, 2009a). In Canada, the Forest Insect and Disease Survey of the Canadian Forest Service conducted annual surveys (Hall et al., 1998) until 1996, following which they became the responsibility of provincial and territorial governments.

Integrating, interpreting, and comparing aerial surveys can be problematic because of their subjective nature, differences in damage classification systems across jurisdictions, and variation in spatial accuracy and resolution (Harris & Dawson, 1979; McConnell et al., 2000; de Beurs & Townsend, 2008). In some instances, aerial surveys provided accurate estimates of damage compared with ground-based observations (MacLean & MacKinnon, 1996; Johnson & Ross, 2008; Taylor & MacLean, 2008). However, spatial and temporal extents of surveys are limited. In Canada, aerial surveys are largely confined to managed forests, and in the United States, surveys were historically limited to timber-producing tree species and did not include national parks or wilderness areas. Damage polygons include live trees, so this ‘affected area’ overestimates the amounts of tree mortality. Approaches to address this problem include deflation factors to convert the affected area to net area of tree mortality (Kurz & Apps, 1999) as well as combining aerial survey information with remotely sensed imagery to identify the specific area in which the disturbance has taken place (Rogan et al., 2006). The patchy, discontinuous nature of disease caused by many native pathogens means that aerial surveys are generally ineffective for identifying outbreaks of most pathogens. For example, Morrison et al. (2000) found belowground incidence of Armillaria root disease to be significantly higher than indicated by aboveground symptoms only. Similar problems arise with root-feeding insects and suboutbreak levels of defoliators and bark beetles.

Satellite remote sensing also provides a means of mapping and monitoring damage caused by insect and pathogen outbreaks, including defoliating insects (e.g., Nelson, 1983; Williams & Nelson, 1986; Leckie & Ostaff, 1988; Franklin & Raske, 1994; Hall et al., 2006), bark beetles (Franklin et al., 2003; Wulder et al., 2006), and pathogens (e.g., Leckie et al., 2004; Pu et al., 2008; Hatala et al., 2010). Reasonably accurate damage maps have been obtained by classifying single images (e.g., Ahern, 1988; Radeloff et al., 1999) as well as by assessing interannual spectral changes using multi-temporal data sets (e.g., Hall et al., 2006; Goodwin et al., 2008; Vogelmann et al., 2009).

Several key characteristics determine the usefulness of satellite imagery for quantifying outbreaks. Spatial resolution is important: relatively smaller outbreaks can be detected using high spatial resolution sensors (2–4 m such as IKONOS or QuickBird) (Coops et al., 2006; Hicke & Logan, 2009), whereas medium-resolution (ca. 30 m, such as Landsat) (Hall et al., 2006; Wulder et al., 2006; Vogelmann et al., 2009) and coarse-resolution (250–1000 m, such as Moderate Resolution Imaging Spectroradiometer) (Fraser & Latifovic, 2005; de Beurs & Townsend, 2008; Coops et al., 2009) imagery are useful for mapping relatively larger outbreaks because such imagery increases the spatial extent (although at the expense of spatial resolution) and decreases the cost. Temporal resolution is also a key characteristic. High temporal frequency imagery is less important for tree mortality events but is needed for capturing short-lived defoliation events. The location of spectral bands is important, although most sensors provide imagery in visible and near-infrared wavelengths useful for mapping tree mortality. Hyperspectral remote sensing appears to be a promising technology for the detection of pathogens because it can detect plant stress far in advance of actual defoliation (Govender et al., 2008) as well as quantify fine-scale patchy damage patterns (Pu et al., 2008; Hatala et al., 2010) and detect root disease (Leckie et al., 2004).

Compared with aerial survey information, satellite imagery can provide more extensive mapping using objective, repeatable methods. Although remote sensing has demonstrated promise in mapping biotic disturbances, operational methods are relatively few. Aerial surveys provide a greater likelihood of guaranteeing data acquisition, and some information (type of disturbance agent, host species) in aerial survey databases is not yet widely available from satellite imagery. Remote sensing, however, provides more spatially precise and consistent detection and mapping of disturbances. Future investigations could explore integrating aerial surveys with satellite remote sensing to take advantage of the strengths of each.

Simulation models

Predicting when and where outbreaks of forest insects and pathogens will occur is needed for assessing future C budgets, particularly because such disturbances are significantly affected by climate. Models of forest insects and pathogens have been developed from a number of different perspectives and with different goals. ‘Hazard rating’ models estimate the susceptibility of a stand to attack based on vegetation composition and structure (age, stem density, etc.) (Krist et al., 2007), and may include simple representations of climate and populations (Shore & Safranyik, 1992). Climate suitability models assess whether conditions
are conducive to outbreaks based on temperature and/or drought. Such models can be based on empirical analysis (e.g., Carroll et al., 2004), climate envelope models (e.g., Magarey et al., 2007), or processes measured in the laboratory (e.g., Bentz et al., 1991). Neither hazard rating nor climate suitability models predict individual outbreaks, but can be used to assess conditions that could potentially lead to outbreaks. Decision support systems or landscape models for different biotic disturbance agents exist and could be incorporated into predictions of C cycle impacts (e.g., Carroll & Meades, 1996; MacLean et al., 2001; Sturtevant et al., 2004; Shore et al., 2006).

Models of population dynamics, which are often based on spatial extensions of traditional epidemiological models, simulate the course of an epidemic, and may include biotic interactions between host, insect/pathogen, and natural enemies. These models may include such processes as insect outbreak initiation, dispersal, and collapse (e.g., Beukema et al., 1997; Logan et al., 1998; Sturtevant et al., 2004; Cairns et al., 2008). Models of pathogens have been used to simulate pathogen transmission (Kleczkowski et al., 1997), assess the role of pathogens in facilitating plant migration through enemy release (Moorcroft et al., 2006), and simulate disease population dynamics and associated uncertainties (Hatala et al., 2011).

Models of carbon cycling often include wildfire and harvest disturbances, but few include biotic disturbance agents. Exceptions include studies of the role of defoliation (Cook et al., 2008; Kurz et al., 2009), aspen decline (Hogg, 1999, 2001), and insect-caused tree mortality (Kurz et al., 2009; Albani et al., 2010; Pfeifer et al., 2011). In general, C cycle models are positioned to include biotic disturbances because they include the main processes needed to simulate impacts (photosynthesis, allocation, decomposition), though challenges remain. Responses of historical carbon stocks and fluxes can be ascertaining by prescribing the location and year of outbreak using remote sensing databases. Methods to assess future impacts of these disturbances range from simpler representations [scenarios that combine information on current outbreaks and expert opinion as in Kurz et al. (2008a)] to more complex modeling of outbreak dynamics (e.g., Albani et al., 2010). In addition to prescribing or predicting the number of trees attacked (through an outbreak submodule, for instance), correct simulation requires understanding how to model responses of the carbon cycle to insect or pathogen outbreaks in terms of tree growth reduction and mortality. Impacts to subsequent ecosystem processes such as decomposition, snagfall rate, regeneration, and surviving stand composition also suggest their importance for accurate simulations of C cycling.

Summary and conclusions

Numerous insect and pathogen species impact forests of the United States and Canada. A few species are particularly important to carbon cycling at regional to continent scales because they cause significant damage across large areas of forest during major outbreaks. However, life histories of only a few significant species are understood well enough to provide a basis for predictive modeling of their impacts on the forest carbon cycle.

Biotic disturbances affect several aspects of carbon cycling. Tree productivity is reduced by growth reductions such as defoliation, root herbivory, or disease. After multiple years of growth reductions, or attack by aggressive bark beetles or pathogens, tree mortality occurs, leading to decreases in primary productivity and creating dead organic matter that subsequently decomposes over long time periods. As a result of decreasing C uptake by live biomass and increases in C loss through decomposition of dead biomass, NEP is often reduced substantially and may result in a forest switching from a C sink to a source. NPP following tree mortality events can recover within a decade or so, whereas changes in decomposition continue for decades to centuries. Following an outbreak, NEP may recover to nearly zero within a few years of a major outbreak or may be strongly negative (a substantial source) for decades. At broader scales, impacts on C stocks and fluxes can be significant when large areas experience substantial tree mortality. When the total number of affected trees within a study region is small, however, the effect on carbon cycling may be greatly reduced.

There are relatively few studies of biotic disturbance impacts on carbon cycling, and these cover only a limited subset of study conditions, implying many uncertainties for generalizing responses. Important factors affecting possible biotic agent impacts include the number of affected trees, type of disturbance agent (growth reducer or tree killer), and duration of attack. In addition, time since outbreak is a major influence on carbon stocks and fluxes, and different studies have focused on different periods. Future studies of biotic disturbance effects on forest carbon cycling should include key information that permits comparisons across studies, including spatial and temporal extent of damage, outbreak severity (degree of damage and number of trees affected within study region), time since disturbance, and postoutbreak stand structure.

Additional research is needed in several key areas. Tracking forest carbon responses for years to decades following disturbances will aid in quantifying recovery rates. Knowledge of the influences of a variety of biotic disturbance agents, both insects and pathogens, and...
across a range of spatial and temporal scales, is needed. Technologies and methods that result in more spatially precise and accurate monitoring and mapping will lead to improved assessment of impacts. Increased understanding of how climate affects insects and pathogens, interactions with other disturbances, construction and testing of predictive models of outbreaks, and inclusion of these models into carbon cycle models will allow for simulation of future impacts to C cycling given future climate change.

Insects and diseases are strongly influenced by climate and weather, and future warming will likely increase the severity and extent of outbreaks. Alterations in future forest composition and structure and therefore carbon sequestration have implications for atmospheric CO₂ concentrations and thus future climate. Projections that include biotic disturbances to forests together with feedbacks to future climate have yet to be produced, however.

It is clear that insect and pathogen outbreaks are important disturbances of forests in the United States and Canada, and major changes may be expected under projected future changes in climate. Their capacity to reduce productivity and kill trees, often across extensive areas, means that they have large influences on the North American carbon budget, as supported by the studies discussed here. However, numerous uncertainties and knowledge gaps currently constrain our ability to estimate or predict many effects of biotic agents on forest carbon cycling. Further research is needed across a range of disturbance types and spatial and temporal scales to provide more reliable assessments of the effects of insect and pathogen outbreaks on the continental carbon cycle.

Acknowledgements

We gratefully acknowledge the comments of several anonymous reviewers as well as Nate McDowell, Steve Edburg, and Arjan Meddens that improved this manuscript. We also thank Eric Kasischke, University of Maryland, for organizing the North American Carbon Program disturbance synthesis. Jeanine Paschke of Sanborn/USFS Forest Health Technology Enterprise Team provided the data shown in Fig. 2. This work was supported in part by the USGS Western Mountain Initiative, USFS Western Wildland Environmental Threat Assessment Center, National Institute for Climate Change Research, DOE, and Idaho NSF EPSCoR to JAH, and an NSF DEB grant 0816541 to KR. RH was supported by the Canadian Space Agency and Natural Resources Canada. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

References

Taylor SL, MacLean DA (2008) Validation of spruce budworm outbreak history in Canada: a case study for assessing climate change and forest disturbances. In: Northern Forest Insect and Disease Conditions in the Rocky Mountain Region, Pacific Forestry Centre, Victoria, BC.

