Click here to see the complete list of Greenberg lab publications through NCBI.


2019   Raja V., Salsaa M., Joshi A.S., Li Y., van Roermund C.W.T., Saadat N., Lazcano P., Schmidtke M., Hüttemann M., Gupta S.V., Wanders R.J.A., Greenberg M.L. Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, In Press.

2018   Yedulla N.R., Naik A.R., Kokotovich K.M., Yu W., Greenberg M.L., Jena B.P. Valproate inhibits glucose-stimulated insulin secretion in beta cells. Histochem Cell Biol, 150(4):395-401.

2018   Lou W., Ting H.C., Reynolds C.A., Tyurina Y.Y., Tyurin V.A., Li Y., Ji J., Yu W., Liang Z., Stoyanovsky D.A., Anthonymuthu T.S., Frasso M.A., Wipf P., Greenberger J.S., Bayir H., Kagan V.E., Greenberg M.L. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1863(10):1354-1368.

2018   Lou W., Reynolds C.A., Li Y., Liu J., Hüttemann M., Schlame M., Stevenson D., Strathdee D., Greenberg M.L. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1863(8):857-865.

2017   Shen Z., Li Y., Gasparski A.N., Abeliovich H., and Greenberg M.L.  Cardiolipin regulates mitophagy through the PKC pathway. J. Biol. Chem., 292:2916-2923.

2017   Yu W., Daniel J., Mehta D., Maddipati K.R., and Greenberg M.L.  MCK11 is a novel regulator of myo-inositol phosphate synthase that is required for inhibition of inositol synthesis by the mood stabilizer valproate.  PLOS ONE, 12(8):e0182534.

2017   Tyurina Y.Y., Lou W., Qu F., Tyurin V.A., Mohammadyani D., Liu J., Hüttemann M., Frasso M.A., Wipf P., Bayir H., Greenberg M.L., and Kagan V.E.  Lipidomics characterization of biosynthetic and remodeling pathways of cardiolipins in genetically and nutritionally manipulated yeast cells. ACS Chem Biol, 12:265-281.

2017   Schlame M. and Greenberg M.L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta, 1862:3-7.

2017   Salsaa M., Case K., and Greenberg M.L. Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs. J. Biol. Chem., 292(45):18729-18730.

2017   Raja V., Reynolds C. A., and Greenberg M.L.  Barth syndrome: A life-threatening disorder caused by abnormal cardiolipin remodeling.  Journal of Rare Diseases Research & Treatment, 2:63-67.

2017   Raja V., Joshi A.S., Li G., Maddipati K.R., and Greenberg M.L.  Loss of cardiolipin leads to perturbation of acetyl CoA synthesis. J. Biol. Chem., 292:1092 – 1102.

2017   Jadhav S., Russo S., Cowart L.A., and Greenberg M.L.  Inositol depletion induced by acute treatment of the bipolar disorder drug valproate increases levels of phytosphingosine. J. Biol. Chem., 292:4953-4959.

2016   Yu W., Ye C., and Greenberg M.L. Inositol hexakisphosphate kinase 1 (IP6K1) regulates inositol synthesis in mammalian cells.  J. Biol. Chem., 291:10437-10444. *JBC Paper of the week.

2016   Yu W. and Greenberg M.L. Inositol depletion, GSK3 inhibition, and bipolar disorder. Future Neurol. 11:135-148.

2016   Ye C., Shen Z., and Greenberg M.L. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function.  J. Bioenerg. Biomemb., 48:113–123.

2016   Kagan V.E., Jiang J., Huang Z., Tyurina Y.Y., Desbourdes C., Cottet-Rousselle C., Dar H., Verma M., Tyruin V., Kapralov A.A., Cheikhi A., Mao G., Stolz D., St. Croix C.M., Watkins S., Shen S., Li Y., Greenberg M.L., Tokarska-Schlattner M., Boissan M., Lacombe M., Epand R.M., Chu C.T., Mallampalli R., Bayir H., and Schlattner U.  NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death and Differentiation, 23:1140-1151.

2016   Joshi A.S., Fei N., and Greenberg M.L. Get1p and Get2p are required for maintenance of mitochondrial morphology and normal cardiolipin levels.  FEMS Yeast Res., 16(3):fow019.

2016   Jadhav S., Russo S., Cottier S., Schneiter R., Cowart A., and Greenberg M.L.  Valproate induces the unfolded protein response by increasing ceramide levels. J. Biol. Chem., 291:22253-22261.

2015   Ye C. and Greenberg M.L. Inositol synthesis regulates activation of GSK-3α in neuronal cells. J. Neurochem. 133:273-283.

2015   Shen Z., Ye C., McCain K., and Greenberg M.L. The role of cardiolipin in cardiovascular health.  BioMed. Res. International, 2015:891707.

2015   Deranieh R.M., Shi Y., Tarsio M., Chen Y., McCaffery J.M., Kane P.M., and Greenberg M.L.  Inositol depletion perturbs the vacuolar-ATPase: A novel mechanism of action of valproate.  J. Biol. Chem., 290:27460-27472.

2014   Ye C., Lou W., Li Y., Chatzispyrou I.A., Hüttemann M., Lee I., Houtkooper R.H., Vaz F.M., Chen S., and Greenberg M.L. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and lifespan defects in the tafazzin mutant: Implications for Barth syndrome. J. Biol. Chem., 289:3114-3125.

2014   Raja V. and Greenberg M.L. The functions of cardiolipin in cellular metabolism – potential modifiers of the Barth syndrome phenotype.  Chemistry and Physics of Lipids, 179:49-56.

2014   Jadhav S. and Greenberg M.L.  Harnessing the power of yeast to elucidate the role of sphingolipids in psychiatric disorders.  Clinical Lipidology, 9:533-551.

2013   Ye C., Bandara W.M.M.S., and Greenberg M.L.  Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae. J. Biol. Chem., 288:24898-24908. *JBC Paper of the week.

2013   Patil V.A., Fox J.L., Gohil V.M., Winge D.R., and Greenberg M.L.  Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.  J. Biol. Chem., 288:1696-1705. PMCID 3548480

2013   Patil V.A. and Greenberg M.L. Cardiolipin-mediated cellular signaling. Adv Exp Med Biol, 991:195-213.

2013   Deranieh R.M., Joshi A.S., and Greenberg M.L. Thin-layer chromatography of phospholipids.  Methods Mol Biol 1033:21-27.  

2013   Deranieh R.M., He Q., Caruso J.A., and Greenberg M.L.  Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.  J. Biol. Chem., 288:26822-26833.

2012   Joshi A.S., Thompson M.N., Fei N., Hüttemann M., and Greenberg M.L. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae.  J. Biol. Chem., 287:17589-17597.    PMCID 3366806

2012   Deranieh R.M., Greenberg M.L., Le Calvez P., Mooney M., and Migaud M.E.  Probing myo-inositol 1-phosphate synthase with multisubstrate adducts. Organic and Biomolecular Chemistry, 10:9601-9619.

2012   Chang P., Orabi B, Deranieh R.M., Dham M., Hoeller O., Shimshoni J.A., Yagen B., Bialer M., Greenberg M.L., Walker M.C., and Williams R.S.B.  The anti-epileptic valproic acid and other medium chain fatty acids reduce phosphoinositide production independently of inositol in Dictyostelium.  Disease Models and Mechanisms, 5:115-124.

2012   Angelini R., Vitale R., Patil V., Cocco T., Ludwig B., Greenberg M.L., and Corcelli A.  Lipidomics of intact mitochondria by MALDI-TOF/MS.  J. Lipid Res., 53:1417-1425. PMCID 3371254

2010   Chen S., Liu D., Finley III R., and Greenberg M.L. Loss of mitochondrial DNA in the yeast cardiolipin synthase mutant crd1 leads to up-regulation of Swe1p. J. Biol. Chem., 285:10397-10407. *JBC Paper of the week. PMCID 2856246

2009   Zhou J., Zhong Q., Li G., and Greenberg M.L.  Loss of cardiolipin leads to longevity defects that are alleviated by down-regulation of the HOG1 stress response pathway. J. Biol. Chem., 284:18106-18114.  PMCID 2709391

2009   Joshi A.S., Zhou J., Gohil V.M., Chen S., and Greenberg M.L. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 1793:212-218. PMCID 2788820

2009   Gohil V.M. and Greenberg M.L.  Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand.  J. Cell Biol. 184:469-472.

2009   Gebert N., Joshi A.S., Kutik S., Becker T., McKenzie M., Guan X.L., Mooga V.P., Stroud D.A., Kulkarni G., Wenk M.R., Rehling P., Meisinger C., Ryan M.T., Wiedermann N., Greenberg M.L., and Pfanner N.  Mitochondrial cardiolipin involved in outer membrane protein biogenesis:  Implications for Barth syndrome.  Current Biology 19:2133-2139.

2009   Ding D., Shi Y., Shaltiel G., Azab A.N., Campbell A., Agam G., and Greenberg M.L.  Yeast bioassay for identification of inositol depleting compounds.  World J. Biol. Psych., 10:893-899..

2009   Deranieh R.M. and Greenberg M.L. Cellular consequences of inositol depletion.  Biochem. Soc. Trans. 37:1099-1103.

2009   Azab A.N., Mehta D.V., Chesebro J.E., and Greenberg M.L.  Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects – a potential mood stabilizing drug.  Life Sciences, 84:38-44.

2008   Chen S., Tarsio M., Kane P.M., and Greenberg M.L.  Cardiolipin mediates cross talk between mitochondria and the vacuole.  Mol. Biol. Cell, 19:5047-5058.

2008   Chen S., He Q., and Greenberg M.L.  Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth.  Mol. Microbiol., 68:1061-1072.

2008   Azab A.N., Ishak J.F., Kaplanski J., Delbar V., and Greenberg M.L.  Mechanisms of action of the mood stabilizer valproate: a focus on GSK-3 inhibition.  Future Neurology, 3:433-445.

2008   Azab A.N., Agam G., Kaplanski J., Delbar V., and Greenberg M.L.  Inositol depletion – a good or bad outcome of valproate treatment.  Future Neurology, 3:275-286.

2007   Zhong Q., Li G., Gvozdenovic-Jeremic J., and Greenberg M.L.  Up-regulation of the cell integrity pathway in Saccharomyces cerevisiae suppresses temperature sensitivity of the pgs1D mutant.  J. Biol. Chem., 282:15946–15953.

2007   Li G., Chen S., Thompson M.N., and Greenberg M.L. New insights into the regulation of cardiolipin biosynthesis in yeast: Implications for Barth syndrome.  Biochim Biophys Acta, 1771:432-41.

2007   Azab A.N., He Q., Ju S., Li G., and Greenberg M.L.  Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol. Microbiol. 63:1248-1258.

2007   Azab A.N. and Greenberg M.L.  Anticonvulsant Efficacy of Valproate-like Carboxylic Acids – A Potential Target for Anti-Bipolar Therapy.  Bipolar Disorders, 9:197-205.

2007   Amigues E., Greenberg M.L., Ju S., Chen Y., and Migaud M.E.  Synthesis of spirocyclophospho-glucoses and glucitols.  Tetrahedron, 63:10042-10053.

2006   Shi Y., Azab A.N., Thompson M.N., and Greenberg M.L.  Inositol phosphates and phosphoinositides in health and disease.  In: Biology of Inositols and Phosphoinositides, Majumder, A.L., and Biswas, B.B., eds., Springer Press, Subcellular Biochemistry 39:265-292.

2006   Azab A.N. and Greenberg M.L.  The Lipid Connection to Bipolar Disorder.  Future Neurology, 1:505-513.

2005   Zhong Q., Gvozdenovic-Jeremic J., Zhou J., Webster P., and Greenberg M.L.  Loss of Function of KRE5 Suppresses Temperature Sensitivity of Mutants Lacking Mitochondrial Anionic Lipids. Mol. Biol. Cell, 16:665-675.

2005   Zhong Q. and Greenberg M.L.  Deficiency in mitochondrial anionic phospholipid synthesis impairs cell wall biogenesis.  Biochem Soc Trans. 33:1158-61.

2005   Vaden D. L., Gohil V.M., Gu Z., and Greenberg M.L.  Separation of Yeast Phospholipids Using One-Dimensional Thin-Layer Chromatography. Anal. Biochem., 338:162-164.

2005   Shi Y., Vaden D.L., Ju S., Ding D., Geiger J.H., and Greenberg M.L.  Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. J. Biol. Chem., 280:41805-10.

2005   Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids,138:38-49.

2005   Gohil V.M., Thompson M.N., and Greenberg M.L. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae.  J. Biol. Chem., 280:35410-35416.

2005   Gohil V.M., Gvozdenovic-Jeremic J., Schlame M., and Greenberg M.L. Binding of 10-N-nonyl acridine orange to cardiolipin deficient yeast cells:  implications for assay of cardiolipin. Anal. Biochem., 343:350-352.

2004   Zhong Q., Gohil V., Ma L., and Greenberg M.L.  Absence of Cardiolipin Results in Temperature Sensitivity, Respiratory Defects, and Mitochondrial DNA Instability Independent of pet56.  J. Biol. Chem., 279:32294-32300.

2004   Shaltiel G., Shamir A., Shapiro J., Ding D., Dalton E., Bialer M., Harwood A.J., Belmaker R.H., Greenberg M.L., Agam G. Valproate Decreases Inositol Biosynthesis. Biol. Psych., 56:868-874.

2004   Ma L., Vaz F.M., Gu Z., Wanders R.J.A., and Greenberg M.L.  The human TAZ gene complements mitochondrial dysfunction in the yeast tazΔ mutant-Implications for Barth syndrome. J. Biol. Chem., 279:44394-44399.

2004   Ju S., Shaltiel G., Shamir A., Agam G., and Greenberg M.L. Human 1-D-myo-Inositol 3-P Synthase Is Functional in Yeast. J. Biol. Chem., 279:21759-21765.

2004   Ju S., and Greenberg M.L.  1D-myo-inositol 3-P synthase: Conservation, regulation, and potential target of mood stabilizers. Clinical Neuroscience Research, 4:181-187.

2004   He Q. and Greenberg M.L. Posttranslational regulation of phosphatidylglycerolphosphate synthase in response to inositol. Mol. Microbiol., 53:1243-1249.

2004   Gu Z., Valianpour F., Chen S., Vaz F.M., Hakkaart G.A., Wanders R.J.A., and Greenberg M.L. Aberrant Cardiolipin Metabolism in the Yeast taz1 Mutant: A Model for Barth Syndrome. Mol. Microbiol. 55:149-158.

2004   Gohil V.M., Hayes P., Matsuyama S., Schägger H., Schlame M., and Greenberg M.L.  Cardiolipin Biosynthesis and Mitochondrial Respiratory Chain Function are Interdependent. J. Biol. Chem., 279:42612-42618.

2003   Zhong Q. and Greenberg M.L.  Regulation of Phosphatidylgycerolphosphate Synthase by Inositol in Saccharomyces cerevisiae Is Not at the Level of PGS1 mRNA abundance.  J. Biol. Chem. 278:33978-33984.

2003   Shamir A., Shaltiel G., Greenberg M.L., Belmaker R.H., and Agam M.L. The Effect of Lithium on Expression of Genes for Inositol Biosynthetic Enzymes in Mouse Hippocampus; a Comparison with the Yeast Model.  Mol. Brain Res. 115:104-110.

2003   Pfeiffer K., Gohil V., Stuart R.A., Hunte C., Brandt U., Greenberg M.L., and Schägger H. Cardiolipin Stabilizes Respiratory Chain Supercomplexes.  J. Biol. Chem., 278: 52873-80.

2003   Ju S. and Greenberg M.L. Valproate Disrupts Regulation of Inositol Responsive Genes and Alters Regulation of Phospholipid Biosynthesis. Mol. Microbiol.  49:1595-1603.

2003   Ding D. and Greenberg M.L. Lithium and Valproate Decrease the Membrane Phosphatidylinositol/Phosphatidylcholine Ratio.  Mol. Microbiol., 47:373-381.

2002   Shaldubina A., Ju S., Vaden D.L., Ding D., Belmaker R.H., and Greenberg M.L. Epi-Inositol Regulates Expression of the Yeast INO1 Gene Encoding Inositol-1-P Synthase. Mol. Psychiatry, 7, 174-180.

2002   Koshkin V. and Greenberg M.L.  Cardiolipin Prevents Rate-Dependent Uncoupling and Provides Osmotic Stability in Yeast Mitochondria. Biochem. J.,364, 317-322.    

2002   Gu Z., Gohil V., Zhong Q., Schlame M., and Greenberg M.L.  The Biosynthesis and Remodeling of Cardiolipin.  In: Glycerolipid Metabolizing Enzymes, Haldar, D., ed., Kerala:  Research Signpost Press.

2002   Agam G., Shamir A., Shaltiel G., Greenberg M.L. Myo-inositol-1-phosphate (MIP) Synthase: a Possible New Target for Antibipolar Drugs. Bipolar Disord, 4, 15-20.         

2001   Vaden D.L., Ding D., Peterson B., and Greenberg M.L.  Lithium and Valproate Decrease Inositol Mass and Increase Expression of the Yeast INO1 and INO2 Genes for Inositol Biosynthesis. J. Biol. Chem., 276, 15466-15471.

2000   Schlame M., Rua D., and Greenberg M.L.  The Biosynthesis and Functional Role of Cardiolipin. Prog. Lipid Res. 39:257-288.

2000   Murray M. and Greenberg M.L.  Expression of Yeast INM1 Encoding Inositol Monophosphatase is Regulated by Inositol, Carbon Source, and Growth Stage and is Decreased by Lithium and Valproate. Mol. Microbiol. 36:651-661.

2000   Koshkin V. and Greenberg M.L.  Oxidative Phosphorylation in Cardiolipin-Lacking Yeast Mitochondria. Biochem. J., 347, 687-691.

2000   Jiang F., Ryan M.T., Schlame M., Zhao M., Gu Z., Klingenberg M.L., Pfanner N., and Greenberg M.L.  Absence of Cardiolipin in the crd1 Null Mutant Results in Decreased Mitochondrial Membrane Potential and Reduced Mitochondrial Function. J. Biol. Chem., 275, 22387-22394.

1999   Jiang F., Gu Z., Granger J., and Greenberg M.L.  Cardiolipin Synthase Expression is Essential for Growth at Elevated Temperature and is Regulated by Factors Affecting Mitochondrial Development. Mol. Microbiol. 31, 373-380.

1998   Zhao M., Schlame M., Rua D., and Greenberg M.L.  Cardiolipin Synthase is Associated with a Large Complex in Yeast Mitochondria.  J. Biol. Chem., 273, 2402-2408.

1998   Zhao M., Rua D., Hajra A., and Greenberg M.L.  Enzymatic Synthesis of [3H]CDP-Diacylglycerol.  Anal. Biochem. 258, 48-52.

1998   Jiang F., Kelly B.L., Hagopian K., and Greenberg M.L.  Purification and Characterization of Phosphatidylglycerolphosphate Synthase from Schizosaccharomyces pombe.  J. Biol. Chem., 273, 4681-4688.

1997   Schlame M. and Greenberg M.L.  Cardiolipin Synthase from Yeast.  Biochim. Biophys. Acta  1348, 201-206.

1997   Murray M. and Greenberg M.L.  Regulation of Inositol Monophosphatase in Saccharomyces cerevisiae.  Mol. Microbiol. 25, 541-546.

1997   Minskoff S. A. and Greenberg M.L.  Phosphatidylglycerophosphate Synthase from Yeast.  Biochim. Biophys. Acta  1348, 187-191.

1997   Jiang F., Rizavi H. S., and Greenberg M.L.  Cardiolipin Is Not Essential for Growth of Saccharomyces cerevisiae on Fermentable or Non-fermentable Carbon Sources.  Mol. Microbiol. 26, 481-491.

1996   Greenberg M.L. and Lopes J.M.  Genetic Regulation of Phospholipid Biosynthesis in Yeast.  Microbiolog. Rev., 60, 1-20.

1995   Schlame M., Zhao M., Rua D., Haldar D. and Greenberg M.L.  Kinetic Analysis of Cardiolipin Synthase:  A Membrane Enzyme with Two Glycerophospholipid Substrates.  Lipids, 30, 633-640.

1994   Minskoff S.A., Racenis P.V., Granger J., Larkins L., Hajra A., and Greenberg M.L.   Regulation of Phosphatidic Acid Biosynthetic Enzymes in Saccharomyces cerevisiae.  J. Lipid Research  35, 2254-2262.

1994   Kelly B.L. and Greenberg M.L.  Expression in Yeast of an E. coli Gene Encoding a Phospholipid Biosynthetic Enzyme.  Gene 147, 111-114.

1993   Greenberg M.L. and Axelrod D.  Anomalously Slow Diffusion of Lipid Probes in Membranes of the Yeast Saccharomyces cerevisiae.  J. Membrane Biol. 131, 115-127.

1992   Racenis P.V., Lai J.L., Das A.K., Hajra A.K., and Greenberg M.L.  Characterization of Acyl/Alkyl-Dihydroxyacetone Phosphate Reductase from Saccharomyces cerevisiae.  J. Bact. 174, 5702-5710.

1992   Minskoff S.A., Gaynor P.M., and Greenberg M.L. Mutant Enrichment in Schizosaccharomyces pombe by Inositol-less Death.  J. Bact. 174, 4078-4085.

1992   Gaynor P.M. and Greenberg M.L.  Regulation of CDP-Diacylglycerol Synthesis and Utilization by Inositol and Choline in Schizosaccharomyces pombe.  J. Bact. 174,  5711-5718.

1991   Karkhoff-Schweizer R., Kelly B.L. and Greenberg M.L.  Characterization and Regulation of Phosphatidylglycerolphosphate Synthase in Schizosaccharomyces pombe.   J. Bact. 173, 6132-6138.

1991   Gaynor P., Hubbell S., Schmidt A., Lina R.A., Minskoff S.A., and Greenberg M.L.  Regulation of Phosphatidylglycerolphosphate Synthase Expression in Saccharomyces cerevisiae by Factors which Affect Mitochondrial Development.  J. Bact. 173, 6124-6131.

1990   Tamai K.T. and Greenberg M.L.  Biochemical Characterization and Regulation of Cardiolipin Synthase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta  1046, 214-222.

1990   Kelly B.L. and Greenberg M.L. Characterization and Regulation of Phosphatidylglycerolphosphate Phosphatase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta 1046,144-150.

1988   Greenberg M.L., Hubbell S., and Lam C.  Inositol Regulates Phosphatidylglycerolphosphate Synthase Expression in Saccharomyces cerevisiae.  Mol. and Cell Biol. 8, 4773-4779.

1986   Skvirsky R., Greenberg M.L., Myers P.L., and Greer H.  A New Negative Control Gene for Amino Acid Biosynthesis in Saccharomyces cerevisiae.  Curr. Genet. 10, 495-501.

1986   Myers P.L., Skvirsky R.C., Greenberg M.L., and Greer H.  Negative Regulatory Gene for General Control of Amino Acid Biosynthesis in Yeast.  Mol. Cell. Biol. 6, 3150-3155.

1986   Greenberg M.L., Myers P.L., Skvirsky R.C., and Greer H.  New Positive and Negative Regulators for General Control of Amino Acid Biosynthesis in Saccharomyces cerevisiae.  Mol. Cell. Biol. 6, 1820-1829.

1983   Greenberg M.L., Klig L., Shicker B., Letts V., and Henry S.A.  Yeast Mutant Defective in Phosphatidylcholine Synthesis.  J. Bacteriol.  153, 791-799.

1982   Greenberg M.L., Reiner B., and Henry S.A.  Regulatory Mutations of Inositol Biosynthesis in Yeast:  Isolation of Inositol-Excreting Mutants.  Genetics 100, 19-33.

1982   Greenberg M.L., Goldwasser P., and Henry S.A.  Characterization of a Regulatory Mutant Constitutive for Synthesis of Inositol-1-Phosphate Synthase.  Molec. Gen. Genetics 186, 157-163.

1981   Henry S.A., Greenberg M.L., Letts V.A., Shicker B., Klig L., and Atkinson K.D.  Genetic Regulation of Phospholipid Synthesis in Yeast, Proceedings of Tenth International Symposium on Yeast.  In Current Developments in Yeast Research:  Advances in Biotechnology, pp. 311-316, Stewart, G., and Russell, J., eds., New York:  Pergamon Press.

1980   Birshtein B.K., Campbell R., and Greenberg M.L.  Aγ2b-γ2a Hybrid Immunoglobulin Heavy Chain Produced by a Variant of the MPC11 Mouse Myeloma Cell Line.  Biochemistry 19, 1730-1737.


 ↑ back to top