1. (10 pts.) Solve: \[
\frac{3}{x - 1} + \frac{x}{x + 1} < 1
\]

2. (8 pts.) Find the domain of the function given by \(f(x) = e^{x^2 - 1} + \ln(4x - x^3) + \cos x \)

3. (10 pts.) Let \(f(x) = x^2 - 4x + 5 \) and \(g(x) = 6 - x^2 \). Find and simplify completely

 (a) \((g \circ f)(x) \)

 (b) \(\frac{f(x + h) - f(x)}{h} \)

4. (6 pts.) Let \(f(x) = \frac{8x - 4}{2x + 6} \). Find \(f^{-1}(x) \), where \(f^{-1} \) is the inverse function of \(f \).

5. (10 pts.) A painter has 200 feet of very thin tape (shown here as solid black lines). He is going to use it to enclose a large rectangle on a basketball court. He is also going to use a piece of tape to partition the rectangle in half (see figure). Express the area \(A \) of the large rectangle as a function of \(x \).

6. (10 pts.) A manufacturer of radios has daily production costs of \(C = 800 - 10x + 0.25x^2 \) where \(C \) is the total cost (in dollars) and \(x \) is the number of radios produced. How many radios should be produced each day to yield a minimum cost?

7. (10 pts.) Let \(P(x) = x^4 - 3x^3 + 6x^2 + 2x - 60 \). Given that \(x = 1 + 3i \) is a solution to the equation \(P(x) = 0 \), find the complete solution set for this equation.
8. (8 pts.) Find the average rate of change of the function from
 a) \(x_1 = -2 \) to \(x_2 = 4 \)
 b) \(x_1 = -1 \) to \(x_2 = 3 \)

9. (14 pts.) Graph \(f(x) = \frac{5x^2 - 10x}{x^2 - 16} \), finding and labeling all intercepts and asymptotes.

10. (10 pts.) Graph \(f(x) = 4 - 2\ln(2x - 1) \), finding and labeling all intercepts and asymptotes.

11. (12 pts.) (a) Given that \(\ln 2 = 0.69 \) and \(\ln 8 = 2.07 \), find the exact value of: \(\ln(2e^8) \)
 (b) Solve: \(6(2^{3x-1}) - 7 = 9 \).

12. (10 pts.) Solve the equation \(\log_{10}(5x) + 2\log_{10}(\sqrt{x-1}) = 2 \) and simplify your result.
13. (10 pts.) A Lightpost design (see figure). Find the angle θ.

14. (10 pts.) Find the exact value, if it is defined: (a) $\csc \left(-\frac{10\pi}{3} \right)$ (b) $\sec \left(\frac{19\pi}{6} \right)$

15. (12 pts.) Given that $\tan \theta = -\frac{4}{3}$ and $\sec \theta < 0$, find the exact value of $\sin \left(\theta + \frac{\pi}{6} \right)$

16. (12 pts.) Let $f(x) = 4\sin(3x + \frac{\pi}{2})$. Graph f over one complete cycle, labeling the x-intercepts and the highest and lowest points.

17. (12 pts.) Find all solutions ($0 \leq x < 2\pi$) of the equation $2\sec^2 x + \tan^2 x - 3 = 0$

18. (10 pts.) Find the exact value, if it is defined

 (a) $\cot \left[\cos^{-1} \left(-\frac{2}{5} \right) \right]$
 (b) $\sin^{-1} \left[\sin \frac{10\pi}{3} \right]$

19. (10 pts.) Prove the identity: $\sec^2 x \cot x - \cot x = \tan x$

20. (6 pts.) Given the point $(\sqrt{3}, -3)$ in rectangular coordinates, convert it to polar coordinates (r, θ) where $r \geq 0$ and $0 \leq \theta < 2\pi$.